xని పరిష్కరించండి
x=-\frac{2}{5}=-0.4
x=-\frac{1}{3}\approx -0.333333333
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
a+b=11 ab=15\times 2=30
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును 15x^{2}+ax+bx+2 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
1,30 2,15 3,10 5,6
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్గా ఉంటాయి. ప్రాడక్ట్ 30ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
1+30=31 2+15=17 3+10=13 5+6=11
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=5 b=6
సమ్ 11ను అందించే పెయిర్ మన పరిష్కారం.
\left(15x^{2}+5x\right)+\left(6x+2\right)
\left(15x^{2}+5x\right)+\left(6x+2\right)ని 15x^{2}+11x+2 వలె తిరిగి వ్రాయండి.
5x\left(3x+1\right)+2\left(3x+1\right)
మొదటి సమూహంలో 5x మరియు రెండవ సమూహంలో 2 ఫ్యాక్టర్ చేయండి.
\left(3x+1\right)\left(5x+2\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 3x+1ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=-\frac{1}{3} x=-\frac{2}{5}
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, 3x+1=0 మరియు 5x+2=0ని పరిష్కరించండి.
15x^{2}+11x+2=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-11±\sqrt{11^{2}-4\times 15\times 2}}{2\times 15}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 15, b స్థానంలో 11 మరియు c స్థానంలో 2 ప్రతిక్షేపించండి.
x=\frac{-11±\sqrt{121-4\times 15\times 2}}{2\times 15}
11 వర్గము.
x=\frac{-11±\sqrt{121-60\times 2}}{2\times 15}
-4 సార్లు 15ని గుణించండి.
x=\frac{-11±\sqrt{121-120}}{2\times 15}
-60 సార్లు 2ని గుణించండి.
x=\frac{-11±\sqrt{1}}{2\times 15}
-120కు 121ని కూడండి.
x=\frac{-11±1}{2\times 15}
1 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-11±1}{30}
2 సార్లు 15ని గుణించండి.
x=-\frac{10}{30}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-11±1}{30} సమీకరణాన్ని పరిష్కరించండి. 1కు -11ని కూడండి.
x=-\frac{1}{3}
10ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-10}{30} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=-\frac{12}{30}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-11±1}{30} సమీకరణాన్ని పరిష్కరించండి. 1ని -11 నుండి వ్యవకలనం చేయండి.
x=-\frac{2}{5}
6ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-12}{30} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=-\frac{1}{3} x=-\frac{2}{5}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
15x^{2}+11x+2=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
15x^{2}+11x+2-2=-2
సమీకరణము యొక్క రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి.
15x^{2}+11x=-2
2ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
\frac{15x^{2}+11x}{15}=-\frac{2}{15}
రెండు వైపులా 15తో భాగించండి.
x^{2}+\frac{11}{15}x=-\frac{2}{15}
15తో భాగించడం ద్వారా 15 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}+\frac{11}{15}x+\left(\frac{11}{30}\right)^{2}=-\frac{2}{15}+\left(\frac{11}{30}\right)^{2}
x రాశి యొక్క గుణకము \frac{11}{15}ని 2తో భాగించి \frac{11}{30}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{11}{30} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+\frac{11}{15}x+\frac{121}{900}=-\frac{2}{15}+\frac{121}{900}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{11}{30}ని వర్గము చేయండి.
x^{2}+\frac{11}{15}x+\frac{121}{900}=\frac{1}{900}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{121}{900}కు -\frac{2}{15}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\left(x+\frac{11}{30}\right)^{2}=\frac{1}{900}
కారకం x^{2}+\frac{11}{15}x+\frac{121}{900}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+\frac{11}{30}\right)^{2}}=\sqrt{\frac{1}{900}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{11}{30}=\frac{1}{30} x+\frac{11}{30}=-\frac{1}{30}
సరళీకృతం చేయండి.
x=-\frac{1}{3} x=-\frac{2}{5}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{11}{30}ని వ్యవకలనం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}