xని పరిష్కరించండి
x=\frac{\sqrt{26}-2}{11}\approx 0.281729047
x=\frac{-\sqrt{26}-2}{11}\approx -0.64536541
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
11x^{2}+4x-2=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-4±\sqrt{4^{2}-4\times 11\left(-2\right)}}{2\times 11}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 11, b స్థానంలో 4 మరియు c స్థానంలో -2 ప్రతిక్షేపించండి.
x=\frac{-4±\sqrt{16-4\times 11\left(-2\right)}}{2\times 11}
4 వర్గము.
x=\frac{-4±\sqrt{16-44\left(-2\right)}}{2\times 11}
-4 సార్లు 11ని గుణించండి.
x=\frac{-4±\sqrt{16+88}}{2\times 11}
-44 సార్లు -2ని గుణించండి.
x=\frac{-4±\sqrt{104}}{2\times 11}
88కు 16ని కూడండి.
x=\frac{-4±2\sqrt{26}}{2\times 11}
104 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-4±2\sqrt{26}}{22}
2 సార్లు 11ని గుణించండి.
x=\frac{2\sqrt{26}-4}{22}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-4±2\sqrt{26}}{22} సమీకరణాన్ని పరిష్కరించండి. 2\sqrt{26}కు -4ని కూడండి.
x=\frac{\sqrt{26}-2}{11}
22తో -4+2\sqrt{26}ని భాగించండి.
x=\frac{-2\sqrt{26}-4}{22}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-4±2\sqrt{26}}{22} సమీకరణాన్ని పరిష్కరించండి. 2\sqrt{26}ని -4 నుండి వ్యవకలనం చేయండి.
x=\frac{-\sqrt{26}-2}{11}
22తో -4-2\sqrt{26}ని భాగించండి.
x=\frac{\sqrt{26}-2}{11} x=\frac{-\sqrt{26}-2}{11}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
11x^{2}+4x-2=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
11x^{2}+4x-2-\left(-2\right)=-\left(-2\right)
సమీకరణం యొక్క రెండు వైపులా 2ని కూడండి.
11x^{2}+4x=-\left(-2\right)
-2ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
11x^{2}+4x=2
-2ని 0 నుండి వ్యవకలనం చేయండి.
\frac{11x^{2}+4x}{11}=\frac{2}{11}
రెండు వైపులా 11తో భాగించండి.
x^{2}+\frac{4}{11}x=\frac{2}{11}
11తో భాగించడం ద్వారా 11 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}+\frac{4}{11}x+\left(\frac{2}{11}\right)^{2}=\frac{2}{11}+\left(\frac{2}{11}\right)^{2}
x రాశి యొక్క గుణకము \frac{4}{11}ని 2తో భాగించి \frac{2}{11}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{2}{11} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+\frac{4}{11}x+\frac{4}{121}=\frac{2}{11}+\frac{4}{121}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{2}{11}ని వర్గము చేయండి.
x^{2}+\frac{4}{11}x+\frac{4}{121}=\frac{26}{121}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{4}{121}కు \frac{2}{11}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\left(x+\frac{2}{11}\right)^{2}=\frac{26}{121}
కారకం x^{2}+\frac{4}{11}x+\frac{4}{121}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+\frac{2}{11}\right)^{2}}=\sqrt{\frac{26}{121}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{2}{11}=\frac{\sqrt{26}}{11} x+\frac{2}{11}=-\frac{\sqrt{26}}{11}
సరళీకృతం చేయండి.
x=\frac{\sqrt{26}-2}{11} x=\frac{-\sqrt{26}-2}{11}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{2}{11}ని వ్యవకలనం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}