xని పరిష్కరించండి
x=1
x=100
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
100+x^{2}-20x-81x=0
రెండు భాగాల నుండి 81xని వ్యవకలనం చేయండి.
100+x^{2}-101x=0
-101xని పొందడం కోసం -20x మరియు -81xని జత చేయండి.
x^{2}-101x+100=0
దీనిని ప్రామాణిక రూపంలో పెట్టడం కోసం పాలినామియల్ను సరి చేయండి. పదాలను అత్యధిక పవర్ నుండి అతి తక్కువ పవర్ క్రమంలో క్రమీకరించండి.
a+b=-101 ab=100
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}-101x+100ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్గా ఉంటాయి. ప్రాడక్ట్ 100ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-100 b=-1
సమ్ -101ను అందించే పెయిర్ మన పరిష్కారం.
\left(x-100\right)\left(x-1\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
x=100 x=1
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-100=0 మరియు x-1=0ని పరిష్కరించండి.
100+x^{2}-20x-81x=0
రెండు భాగాల నుండి 81xని వ్యవకలనం చేయండి.
100+x^{2}-101x=0
-101xని పొందడం కోసం -20x మరియు -81xని జత చేయండి.
x^{2}-101x+100=0
దీనిని ప్రామాణిక రూపంలో పెట్టడం కోసం పాలినామియల్ను సరి చేయండి. పదాలను అత్యధిక పవర్ నుండి అతి తక్కువ పవర్ క్రమంలో క్రమీకరించండి.
a+b=-101 ab=1\times 100=100
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx+100 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్గా ఉంటాయి. ప్రాడక్ట్ 100ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-100 b=-1
సమ్ -101ను అందించే పెయిర్ మన పరిష్కారం.
\left(x^{2}-100x\right)+\left(-x+100\right)
\left(x^{2}-100x\right)+\left(-x+100\right)ని x^{2}-101x+100 వలె తిరిగి వ్రాయండి.
x\left(x-100\right)-\left(x-100\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో -1 ఫ్యాక్టర్ చేయండి.
\left(x-100\right)\left(x-1\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-100ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=100 x=1
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-100=0 మరియు x-1=0ని పరిష్కరించండి.
100+x^{2}-20x-81x=0
రెండు భాగాల నుండి 81xని వ్యవకలనం చేయండి.
100+x^{2}-101x=0
-101xని పొందడం కోసం -20x మరియు -81xని జత చేయండి.
x^{2}-101x+100=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-101\right)±\sqrt{\left(-101\right)^{2}-4\times 100}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో -101 మరియు c స్థానంలో 100 ప్రతిక్షేపించండి.
x=\frac{-\left(-101\right)±\sqrt{10201-4\times 100}}{2}
-101 వర్గము.
x=\frac{-\left(-101\right)±\sqrt{10201-400}}{2}
-4 సార్లు 100ని గుణించండి.
x=\frac{-\left(-101\right)±\sqrt{9801}}{2}
-400కు 10201ని కూడండి.
x=\frac{-\left(-101\right)±99}{2}
9801 వర్గమూలాన్ని తీసుకోండి.
x=\frac{101±99}{2}
-101 సంఖ్య యొక్క వ్యతిరేకం 101.
x=\frac{200}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{101±99}{2} సమీకరణాన్ని పరిష్కరించండి. 99కు 101ని కూడండి.
x=100
2తో 200ని భాగించండి.
x=\frac{2}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{101±99}{2} సమీకరణాన్ని పరిష్కరించండి. 99ని 101 నుండి వ్యవకలనం చేయండి.
x=1
2తో 2ని భాగించండి.
x=100 x=1
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
100+x^{2}-20x-81x=0
రెండు భాగాల నుండి 81xని వ్యవకలనం చేయండి.
100+x^{2}-101x=0
-101xని పొందడం కోసం -20x మరియు -81xని జత చేయండి.
x^{2}-101x=-100
రెండు భాగాల నుండి 100ని వ్యవకలనం చేయండి. సున్నా నుండి ఏ సంఖ్యను తీసివేసినా కూడా దాని రుణాత్మక రూపం వస్తుంది.
x^{2}-101x+\left(-\frac{101}{2}\right)^{2}=-100+\left(-\frac{101}{2}\right)^{2}
x రాశి యొక్క గుణకము -101ని 2తో భాగించి -\frac{101}{2}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -\frac{101}{2} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-101x+\frac{10201}{4}=-100+\frac{10201}{4}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా -\frac{101}{2}ని వర్గము చేయండి.
x^{2}-101x+\frac{10201}{4}=\frac{9801}{4}
\frac{10201}{4}కు -100ని కూడండి.
\left(x-\frac{101}{2}\right)^{2}=\frac{9801}{4}
కారకం x^{2}-101x+\frac{10201}{4}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-\frac{101}{2}\right)^{2}}=\sqrt{\frac{9801}{4}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్ను వర్గమూలాన్ని తీసుకోండి.
x-\frac{101}{2}=\frac{99}{2} x-\frac{101}{2}=-\frac{99}{2}
సరళీకృతం చేయండి.
x=100 x=1
సమీకరణం యొక్క రెండు వైపులా \frac{101}{2}ని కూడండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}