లబ్ధమూలము
\left(6x+1\right)^{2}
మూల్యాంకనం చేయండి
\left(6x+1\right)^{2}
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
36x^{2}+12x+1
దీనిని ప్రామాణిక రూపంలో పెట్టడం కోసం పాలినామియల్ను సరి చేయండి. పదాలను అత్యధిక పవర్ నుండి అతి తక్కువ పవర్ క్రమంలో క్రమీకరించండి.
a+b=12 ab=36\times 1=36
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని 36x^{2}+ax+bx+1 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
1,36 2,18 3,12 4,9 6,6
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్గా ఉంటాయి. ప్రాడక్ట్ 36ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=6 b=6
సమ్ 12ను అందించే పెయిర్ మన పరిష్కారం.
\left(36x^{2}+6x\right)+\left(6x+1\right)
\left(36x^{2}+6x\right)+\left(6x+1\right)ని 36x^{2}+12x+1 వలె తిరిగి వ్రాయండి.
6x\left(6x+1\right)+6x+1
36x^{2}+6xలో 6xని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(6x+1\right)\left(6x+1\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 6x+1ని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(6x+1\right)^{2}
ద్విపద చతురస్రం వలె తిరిగి వ్రాయండి.
factor(36x^{2}+12x+1)
ఈ మూడు కత్తెముల రూపం నిజానికి ఒక మూడు కత్తెముల చతురస్రం యొక్క ఆకృతిని కలిగి ఉంది, ఇది ఉమ్మడి భాజకముతో గుణించబడింది. ప్రధాన మరియు అనుసరణ పదాల యొక్క చతురస్ర మూలాలను కనుగొనడం ద్వారా మూడు కత్తెముల చతురస్రాల గుణావయవముని కనుగొనవచ్చు.
gcf(36,12,1)=1
గుణకముల యొక్క అతిపెద్ద ఉమ్మడి లబ్ధిమూలమును కనుగొనండి.
\sqrt{36x^{2}}=6x
ప్రధాన విలువ యొక్క వర్గమూలమును కనుగొనండి, 36x^{2}.
\left(6x+1\right)^{2}
మూడు కత్తెముల చతురస్రం అనేది మొదటి మరియు చివరి విలువల యొక్క వర్గమూలాల యొక్క సంకలనం లేదా భేదము యొక్క ద్విపదము యొక్క వర్గం, సంకేతం అనేది మూడు కత్తెముల యొక్క మధ్యలోని విలువ యొక్క సంకేతం.
36x^{2}+12x+1=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2\times 36}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-12±\sqrt{144-4\times 36}}{2\times 36}
12 వర్గము.
x=\frac{-12±\sqrt{144-144}}{2\times 36}
-4 సార్లు 36ని గుణించండి.
x=\frac{-12±\sqrt{0}}{2\times 36}
-144కు 144ని కూడండి.
x=\frac{-12±0}{2\times 36}
0 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-12±0}{72}
2 సార్లు 36ని గుణించండి.
36x^{2}+12x+1=36\left(x-\left(-\frac{1}{6}\right)\right)\left(x-\left(-\frac{1}{6}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం -\frac{1}{6}ని మరియు x_{2} కోసం -\frac{1}{6}ని ప్రతిక్షేపించండి.
36x^{2}+12x+1=36\left(x+\frac{1}{6}\right)\left(x+\frac{1}{6}\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.
36x^{2}+12x+1=36\times \frac{6x+1}{6}\left(x+\frac{1}{6}\right)
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా xకు \frac{1}{6}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
36x^{2}+12x+1=36\times \frac{6x+1}{6}\times \frac{6x+1}{6}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా xకు \frac{1}{6}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
36x^{2}+12x+1=36\times \frac{\left(6x+1\right)\left(6x+1\right)}{6\times 6}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{6x+1}{6} సార్లు \frac{6x+1}{6}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
36x^{2}+12x+1=36\times \frac{\left(6x+1\right)\left(6x+1\right)}{36}
6 సార్లు 6ని గుణించండి.
36x^{2}+12x+1=\left(6x+1\right)\left(6x+1\right)
36 మరియు 36లో అతిపెద్ద ఉమ్మడి కారకము 36ను తీసివేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}