xని పరిష్కరించండి
x=4
x=0
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
20x-5x^{2}=0
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
x\left(20-5x\right)=0
x యొక్క లబ్ధమూలమును కనుగొనండి.
x=0 x=4
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x=0 మరియు 20-5x=0ని పరిష్కరించండి.
20x-5x^{2}=0
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
-5x^{2}+20x=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-20±\sqrt{20^{2}}}{2\left(-5\right)}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో -5, b స్థానంలో 20 మరియు c స్థానంలో 0 ప్రతిక్షేపించండి.
x=\frac{-20±20}{2\left(-5\right)}
20^{2} వర్గమూలాన్ని తీసుకోండి.
x=\frac{-20±20}{-10}
2 సార్లు -5ని గుణించండి.
x=\frac{0}{-10}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-20±20}{-10} సమీకరణాన్ని పరిష్కరించండి. 20కు -20ని కూడండి.
x=0
-10తో 0ని భాగించండి.
x=-\frac{40}{-10}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-20±20}{-10} సమీకరణాన్ని పరిష్కరించండి. 20ని -20 నుండి వ్యవకలనం చేయండి.
x=4
-10తో -40ని భాగించండి.
x=0 x=4
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
20x-5x^{2}=0
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
-5x^{2}+20x=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
\frac{-5x^{2}+20x}{-5}=\frac{0}{-5}
రెండు వైపులా -5తో భాగించండి.
x^{2}+\frac{20}{-5}x=\frac{0}{-5}
-5తో భాగించడం ద్వారా -5 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}-4x=\frac{0}{-5}
-5తో 20ని భాగించండి.
x^{2}-4x=0
-5తో 0ని భాగించండి.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
x రాశి యొక్క గుణకము -4ని 2తో భాగించి -2ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -2 యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-4x+4=4
-2 వర్గము.
\left(x-2\right)^{2}=4
కారకం x^{2}-4x+4. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్ను వర్గమూలాన్ని తీసుకోండి.
x-2=2 x-2=-2
సరళీకృతం చేయండి.
x=4 x=0
సమీకరణం యొక్క రెండు వైపులా 2ని కూడండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}