మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x^{2}-5x+6=0
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
a+b=-5 ab=6
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}-5x+6ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,-6 -2,-3
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 6ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1-6=-7 -2-3=-5
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-3 b=-2
సమ్ -5ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x-3\right)\left(x-2\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
x=3 x=2
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-3=0 మరియు x-2=0ని పరిష్కరించండి.
x^{2}-5x+6=0
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
a+b=-5 ab=1\times 6=6
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx+6 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,-6 -2,-3
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 6ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1-6=-7 -2-3=-5
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-3 b=-2
సమ్ -5ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}-3x\right)+\left(-2x+6\right)
\left(x^{2}-3x\right)+\left(-2x+6\right)ని x^{2}-5x+6 వలె తిరిగి వ్రాయండి.
x\left(x-3\right)-2\left(x-3\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో -2 ఫ్యాక్టర్ చేయండి.
\left(x-3\right)\left(x-2\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-3ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=3 x=2
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-3=0 మరియు x-2=0ని పరిష్కరించండి.
x^{2}-5x+6=0
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో -5 మరియు c స్థానంలో 6 ప్రతిక్షేపించండి.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6}}{2}
-5 వర్గము.
x=\frac{-\left(-5\right)±\sqrt{25-24}}{2}
-4 సార్లు 6ని గుణించండి.
x=\frac{-\left(-5\right)±\sqrt{1}}{2}
-24కు 25ని కూడండి.
x=\frac{-\left(-5\right)±1}{2}
1 వర్గమూలాన్ని తీసుకోండి.
x=\frac{5±1}{2}
-5 సంఖ్య యొక్క వ్యతిరేకం 5.
x=\frac{6}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{5±1}{2} సమీకరణాన్ని పరిష్కరించండి. 1కు 5ని కూడండి.
x=3
2తో 6ని భాగించండి.
x=\frac{4}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{5±1}{2} సమీకరణాన్ని పరిష్కరించండి. 1ని 5 నుండి వ్యవకలనం చేయండి.
x=2
2తో 4ని భాగించండి.
x=3 x=2
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
x^{2}-5x+6=0
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
x^{2}-5x=-6
రెండు భాగాల నుండి 6ని వ్యవకలనం చేయండి. సున్నా నుండి ఏ సంఖ్యను తీసివేసినా కూడా దాని రుణాత్మక రూపం వస్తుంది.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-6+\left(-\frac{5}{2}\right)^{2}
x రాశి యొక్క గుణకము -5ని 2తో భాగించి -\frac{5}{2}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -\frac{5}{2} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-5x+\frac{25}{4}=-6+\frac{25}{4}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా -\frac{5}{2}ని వర్గము చేయండి.
x^{2}-5x+\frac{25}{4}=\frac{1}{4}
\frac{25}{4}కు -6ని కూడండి.
\left(x-\frac{5}{2}\right)^{2}=\frac{1}{4}
కారకం x^{2}-5x+\frac{25}{4}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x-\frac{5}{2}=\frac{1}{2} x-\frac{5}{2}=-\frac{1}{2}
సరళీకృతం చేయండి.
x=3 x=2
సమీకరణం యొక్క రెండు వైపులా \frac{5}{2}ని కూడండి.