మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి (సంకీర్ణ పరిష్కారం)
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

-x^{2}-x-1=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో -1, b స్థానంలో -1 మరియు c స్థానంలో -1 ప్రతిక్షేపించండి.
x=\frac{-\left(-1\right)±\sqrt{1+4\left(-1\right)}}{2\left(-1\right)}
-4 సార్లు -1ని గుణించండి.
x=\frac{-\left(-1\right)±\sqrt{1-4}}{2\left(-1\right)}
4 సార్లు -1ని గుణించండి.
x=\frac{-\left(-1\right)±\sqrt{-3}}{2\left(-1\right)}
-4కు 1ని కూడండి.
x=\frac{-\left(-1\right)±\sqrt{3}i}{2\left(-1\right)}
-3 వర్గమూలాన్ని తీసుకోండి.
x=\frac{1±\sqrt{3}i}{2\left(-1\right)}
-1 సంఖ్య యొక్క వ్యతిరేకం 1.
x=\frac{1±\sqrt{3}i}{-2}
2 సార్లు -1ని గుణించండి.
x=\frac{1+\sqrt{3}i}{-2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{1±\sqrt{3}i}{-2} సమీకరణాన్ని పరిష్కరించండి. i\sqrt{3}కు 1ని కూడండి.
x=\frac{-\sqrt{3}i-1}{2}
-2తో 1+i\sqrt{3}ని భాగించండి.
x=\frac{-\sqrt{3}i+1}{-2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{1±\sqrt{3}i}{-2} సమీకరణాన్ని పరిష్కరించండి. i\sqrt{3}ని 1 నుండి వ్యవకలనం చేయండి.
x=\frac{-1+\sqrt{3}i}{2}
-2తో 1-i\sqrt{3}ని భాగించండి.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
-x^{2}-x-1=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
-x^{2}-x-1-\left(-1\right)=-\left(-1\right)
సమీకరణం యొక్క రెండు వైపులా 1ని కూడండి.
-x^{2}-x=-\left(-1\right)
-1ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
-x^{2}-x=1
-1ని 0 నుండి వ్యవకలనం చేయండి.
\frac{-x^{2}-x}{-1}=\frac{1}{-1}
రెండు వైపులా -1తో భాగించండి.
x^{2}+\left(-\frac{1}{-1}\right)x=\frac{1}{-1}
-1తో భాగించడం ద్వారా -1 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}+x=\frac{1}{-1}
-1తో -1ని భాగించండి.
x^{2}+x=-1
-1తో 1ని భాగించండి.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
x రాశి యొక్క గుణకము 1ని 2తో భాగించి \frac{1}{2}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{1}{2} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{1}{2}ని వర్గము చేయండి.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
\frac{1}{4}కు -1ని కూడండి.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
కారకం x^{2}+x+\frac{1}{4}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
సరళీకృతం చేయండి.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{1}{2}ని వ్యవకలనం చేయండి.