మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

-3x^{2}+4x-1=0
రెండు వైపులా 3తో భాగించండి.
a+b=4 ab=-3\left(-1\right)=3
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును -3x^{2}+ax+bx-1 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
a=3 b=1
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. అటువంటి పెయిర్ మాత్రమే సిస్టమ్ పరిష్కారమం.
\left(-3x^{2}+3x\right)+\left(x-1\right)
\left(-3x^{2}+3x\right)+\left(x-1\right)ని -3x^{2}+4x-1 వలె తిరిగి వ్రాయండి.
3x\left(-x+1\right)-\left(-x+1\right)
మొదటి సమూహంలో 3x మరియు రెండవ సమూహంలో -1 ఫ్యాక్టర్ చేయండి.
\left(-x+1\right)\left(3x-1\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ -x+1ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=1 x=\frac{1}{3}
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, -x+1=0 మరియు 3x-1=0ని పరిష్కరించండి.
-9x^{2}+12x-3=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-12±\sqrt{12^{2}-4\left(-9\right)\left(-3\right)}}{2\left(-9\right)}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో -9, b స్థానంలో 12 మరియు c స్థానంలో -3 ప్రతిక్షేపించండి.
x=\frac{-12±\sqrt{144-4\left(-9\right)\left(-3\right)}}{2\left(-9\right)}
12 వర్గము.
x=\frac{-12±\sqrt{144+36\left(-3\right)}}{2\left(-9\right)}
-4 సార్లు -9ని గుణించండి.
x=\frac{-12±\sqrt{144-108}}{2\left(-9\right)}
36 సార్లు -3ని గుణించండి.
x=\frac{-12±\sqrt{36}}{2\left(-9\right)}
-108కు 144ని కూడండి.
x=\frac{-12±6}{2\left(-9\right)}
36 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-12±6}{-18}
2 సార్లు -9ని గుణించండి.
x=-\frac{6}{-18}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-12±6}{-18} సమీకరణాన్ని పరిష్కరించండి. 6కు -12ని కూడండి.
x=\frac{1}{3}
6ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-6}{-18} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=-\frac{18}{-18}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-12±6}{-18} సమీకరణాన్ని పరిష్కరించండి. 6ని -12 నుండి వ్యవకలనం చేయండి.
x=1
-18తో -18ని భాగించండి.
x=\frac{1}{3} x=1
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
-9x^{2}+12x-3=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
-9x^{2}+12x-3-\left(-3\right)=-\left(-3\right)
సమీకరణం యొక్క రెండు వైపులా 3ని కూడండి.
-9x^{2}+12x=-\left(-3\right)
-3ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
-9x^{2}+12x=3
-3ని 0 నుండి వ్యవకలనం చేయండి.
\frac{-9x^{2}+12x}{-9}=\frac{3}{-9}
రెండు వైపులా -9తో భాగించండి.
x^{2}+\frac{12}{-9}x=\frac{3}{-9}
-9తో భాగించడం ద్వారా -9 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}-\frac{4}{3}x=\frac{3}{-9}
3ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{12}{-9} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x^{2}-\frac{4}{3}x=-\frac{1}{3}
3ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{3}{-9} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{2}{3}\right)^{2}
x రాశి యొక్క గుణకము -\frac{4}{3}ని 2తో భాగించి -\frac{2}{3}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -\frac{2}{3} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా -\frac{2}{3}ని వర్గము చేయండి.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{4}{9}కు -\frac{1}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\left(x-\frac{2}{3}\right)^{2}=\frac{1}{9}
కారకం x^{2}-\frac{4}{3}x+\frac{4}{9}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x-\frac{2}{3}=\frac{1}{3} x-\frac{2}{3}=-\frac{1}{3}
సరళీకృతం చేయండి.
x=1 x=\frac{1}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{2}{3}ని కూడండి.