మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3\left(-x^{2}-4x-4\right)
3 యొక్క లబ్ధమూలమును కనుగొనండి.
a+b=-4 ab=-\left(-4\right)=4
-x^{2}-4x-4ని పరిగణించండి. గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని -x^{2}+ax+bx-4 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,-4 -2,-2
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 4ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1-4=-5 -2-2=-4
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-2 b=-2
సమ్ -4ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(-x^{2}-2x\right)+\left(-2x-4\right)
\left(-x^{2}-2x\right)+\left(-2x-4\right)ని -x^{2}-4x-4 వలె తిరిగి వ్రాయండి.
-x\left(x+2\right)-2\left(x+2\right)
మొదటి సమూహంలో -x మరియు రెండవ సమూహంలో -2 ఫ్యాక్టర్ చేయండి.
\left(x+2\right)\left(-x-2\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x+2ని ఫ్యాక్టర్ అవుట్ చేయండి.
3\left(x+2\right)\left(-x-2\right)
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్‌ప్రెషన్‌ని తిరిగి వ్రాయండి.
-3x^{2}-12x-12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)\left(-12\right)}}{2\left(-3\right)}
-12 వర్గము.
x=\frac{-\left(-12\right)±\sqrt{144+12\left(-12\right)}}{2\left(-3\right)}
-4 సార్లు -3ని గుణించండి.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\left(-3\right)}
12 సార్లు -12ని గుణించండి.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\left(-3\right)}
-144కు 144ని కూడండి.
x=\frac{-\left(-12\right)±0}{2\left(-3\right)}
0 వర్గమూలాన్ని తీసుకోండి.
x=\frac{12±0}{2\left(-3\right)}
-12 సంఖ్య యొక్క వ్యతిరేకం 12.
x=\frac{12±0}{-6}
2 సార్లు -3ని గుణించండి.
-3x^{2}-12x-12=-3\left(x-\left(-2\right)\right)\left(x-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం -2ని మరియు x_{2} కోసం -2ని ప్రతిక్షేపించండి.
-3x^{2}-12x-12=-3\left(x+2\right)\left(x+2\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.