మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

-3=x^{2}-4x+4-3
\left(x-2\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ఉపయోగించండి.
-3=x^{2}-4x+1
1ని పొందడం కోసం 3ని 4 నుండి వ్యవకలనం చేయండి.
x^{2}-4x+1=-3
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
x^{2}-4x+1+3=0
రెండు వైపులా 3ని జోడించండి.
x^{2}-4x+4=0
4ని పొందడం కోసం 1 మరియు 3ని కూడండి.
a+b=-4 ab=4
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}-4x+4ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,-4 -2,-2
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 4ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1-4=-5 -2-2=-4
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-2 b=-2
సమ్ -4ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x-2\right)\left(x-2\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
\left(x-2\right)^{2}
ద్విపద చతురస్రం వలె తిరిగి వ్రాయండి.
x=2
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-2=0ని పరిష్కరించండి.
-3=x^{2}-4x+4-3
\left(x-2\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ఉపయోగించండి.
-3=x^{2}-4x+1
1ని పొందడం కోసం 3ని 4 నుండి వ్యవకలనం చేయండి.
x^{2}-4x+1=-3
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
x^{2}-4x+1+3=0
రెండు వైపులా 3ని జోడించండి.
x^{2}-4x+4=0
4ని పొందడం కోసం 1 మరియు 3ని కూడండి.
a+b=-4 ab=1\times 4=4
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx+4 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,-4 -2,-2
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 4ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1-4=-5 -2-2=-4
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-2 b=-2
సమ్ -4ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}-2x\right)+\left(-2x+4\right)
\left(x^{2}-2x\right)+\left(-2x+4\right)ని x^{2}-4x+4 వలె తిరిగి వ్రాయండి.
x\left(x-2\right)-2\left(x-2\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో -2 ఫ్యాక్టర్ చేయండి.
\left(x-2\right)\left(x-2\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-2ని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(x-2\right)^{2}
ద్విపద చతురస్రం వలె తిరిగి వ్రాయండి.
x=2
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-2=0ని పరిష్కరించండి.
-3=x^{2}-4x+4-3
\left(x-2\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ఉపయోగించండి.
-3=x^{2}-4x+1
1ని పొందడం కోసం 3ని 4 నుండి వ్యవకలనం చేయండి.
x^{2}-4x+1=-3
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
x^{2}-4x+1+3=0
రెండు వైపులా 3ని జోడించండి.
x^{2}-4x+4=0
4ని పొందడం కోసం 1 మరియు 3ని కూడండి.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో -4 మరియు c స్థానంలో 4 ప్రతిక్షేపించండి.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
-4 వర్గము.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
-4 సార్లు 4ని గుణించండి.
x=\frac{-\left(-4\right)±\sqrt{0}}{2}
-16కు 16ని కూడండి.
x=-\frac{-4}{2}
0 వర్గమూలాన్ని తీసుకోండి.
x=\frac{4}{2}
-4 సంఖ్య యొక్క వ్యతిరేకం 4.
x=2
2తో 4ని భాగించండి.
-3=x^{2}-4x+4-3
\left(x-2\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ఉపయోగించండి.
-3=x^{2}-4x+1
1ని పొందడం కోసం 3ని 4 నుండి వ్యవకలనం చేయండి.
x^{2}-4x+1=-3
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
x^{2}-4x=-3-1
రెండు భాగాల నుండి 1ని వ్యవకలనం చేయండి.
x^{2}-4x=-4
-4ని పొందడం కోసం 1ని -3 నుండి వ్యవకలనం చేయండి.
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
x రాశి యొక్క గుణకము -4ని 2తో భాగించి -2ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -2 యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-4x+4=-4+4
-2 వర్గము.
x^{2}-4x+4=0
4కు -4ని కూడండి.
\left(x-2\right)^{2}=0
కారకం x^{2}-4x+4. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x-2=0 x-2=0
సరళీకృతం చేయండి.
x=2 x=2
సమీకరణం యొక్క రెండు వైపులా 2ని కూడండి.
x=2
సమీకరణం ఇప్పుడు పరిష్కరించబడింది. పరిష్కారాలు ఒకటే.