మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి (సంకీర్ణ పరిష్కారం)
Tick mark Image
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

-2x+3x^{3}-20=0
రెండు భాగాల నుండి 20ని వ్యవకలనం చేయండి.
3x^{3}-2x-20=0
ప్రామాణిక ఆకృతిలో ఉంచడం కోసం సమీకరణమును సర్దుబాటు చేయండి. విలువలను ఎక్కువ నుండి తక్కువ ఘాతం క్రమంలో ఏర్పాటు చేయండి.
±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
పరిమేయ మూల సిద్ధాంతం ప్రకారం, పాలీనామియల్ యొక్క అన్ని రేషనల్ రూట్‌లు రూపంలో \frac{p}{q} ఉండాలి, ఇందులో p అనేది కాన్‌స్టంట్ టర్మ్ -20ని భాగిస్తుంది మరియు q అనేది లీడింగ్ కోఎఫిషియంట్ 3ని భాగిస్తుంది. మొత్తం క్యాండిడేట్‌లను \frac{p}{q} జాబితా చేయండి.
x=2
అత్యంత చిన్న విలువ నుండి ఖచ్చితమైన విలువ వరకు, అన్ని పూర్ణాంకం విలువలను ప్రయత్నించడం ద్వారా అటువంటి ఒక రూట్‌ను కనుగొనండి. పూర్ణాంకం రూట్‌లు కనుగొనబడకుంటే, ఫ్రాక్షన్‌లను ప్రయత్నించండి.
3x^{2}+6x+10=0
ఫ్యాక్టర్ సిద్ధాంతం ప్రకారం, x-k అనేది ప్రతి రూట్ k యొక్క పాలీనామియల్‌కు ఒక ఫ్యాక్టర్. 3x^{3}-2x-20ని x-2తో భాగించి 3x^{2}+6x+10ని పొందండి. ఫలితం మరియు 0 సమానంగా ఉన్నప్పుడు ఎక్స్‌ప్రెషన్‌ను పరిష్కరించండి.
x=\frac{-6±\sqrt{6^{2}-4\times 3\times 10}}{2\times 3}
ax^{2}+bx+c=0 ఫారమ్ యొక్క అన్ని సమీకరణాలను దిగువ క్వాడ్రాటిక్ సూత్రాన్ని ఉపయోగించి పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. క్వాడ్రాటిక్ సూత్రంలో 3 స్థానంలో a, 6 స్థానంలో b 10 స్థానంలో c ఉంచండి.
x=\frac{-6±\sqrt{-84}}{6}
లెక్కలు చేయండి.
x=-\frac{\sqrt{21}i}{3}-1 x=\frac{\sqrt{21}i}{3}-1
± ప్లస్ మరియు ± మైనస్ అయినప్పుడు సమీకరణం 3x^{2}+6x+10=0ని పరిష్కరించండి.
x=2 x=-\frac{\sqrt{21}i}{3}-1 x=\frac{\sqrt{21}i}{3}-1
కనుగొన్న అన్ని పరిష్కారాలను జాబితా చేయండి.
-2x+3x^{3}-20=0
రెండు భాగాల నుండి 20ని వ్యవకలనం చేయండి.
3x^{3}-2x-20=0
ప్రామాణిక ఆకృతిలో ఉంచడం కోసం సమీకరణమును సర్దుబాటు చేయండి. విలువలను ఎక్కువ నుండి తక్కువ ఘాతం క్రమంలో ఏర్పాటు చేయండి.
±\frac{20}{3},±20,±\frac{10}{3},±10,±\frac{5}{3},±5,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
పరిమేయ మూల సిద్ధాంతం ప్రకారం, పాలీనామియల్ యొక్క అన్ని రేషనల్ రూట్‌లు రూపంలో \frac{p}{q} ఉండాలి, ఇందులో p అనేది కాన్‌స్టంట్ టర్మ్ -20ని భాగిస్తుంది మరియు q అనేది లీడింగ్ కోఎఫిషియంట్ 3ని భాగిస్తుంది. మొత్తం క్యాండిడేట్‌లను \frac{p}{q} జాబితా చేయండి.
x=2
అత్యంత చిన్న విలువ నుండి ఖచ్చితమైన విలువ వరకు, అన్ని పూర్ణాంకం విలువలను ప్రయత్నించడం ద్వారా అటువంటి ఒక రూట్‌ను కనుగొనండి. పూర్ణాంకం రూట్‌లు కనుగొనబడకుంటే, ఫ్రాక్షన్‌లను ప్రయత్నించండి.
3x^{2}+6x+10=0
ఫ్యాక్టర్ సిద్ధాంతం ప్రకారం, x-k అనేది ప్రతి రూట్ k యొక్క పాలీనామియల్‌కు ఒక ఫ్యాక్టర్. 3x^{3}-2x-20ని x-2తో భాగించి 3x^{2}+6x+10ని పొందండి. ఫలితం మరియు 0 సమానంగా ఉన్నప్పుడు ఎక్స్‌ప్రెషన్‌ను పరిష్కరించండి.
x=\frac{-6±\sqrt{6^{2}-4\times 3\times 10}}{2\times 3}
ax^{2}+bx+c=0 ఫారమ్ యొక్క అన్ని సమీకరణాలను దిగువ క్వాడ్రాటిక్ సూత్రాన్ని ఉపయోగించి పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. క్వాడ్రాటిక్ సూత్రంలో 3 స్థానంలో a, 6 స్థానంలో b 10 స్థానంలో c ఉంచండి.
x=\frac{-6±\sqrt{-84}}{6}
లెక్కలు చేయండి.
x\in \emptyset
రియల్ ఫీల్డ్‌లో రుణాత్మక సంఖ్య యొక్క వర్గమూలం నిర్వచించబడలేదు కనుక పరిష్కారాలు లేవు.
x=2
కనుగొన్న అన్ని పరిష్కారాలను జాబితా చేయండి.