మెయిన్ కంటెంట్ కు వెళ్లండి
మూల్యాంకనం చేయండి
Tick mark Image
విస్తరించండి
Tick mark Image

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x^{2}-xy+\frac{1}{4}y^{2}+\left(x+\frac{1}{2}y\right)^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
\left(x-\frac{1}{2}y\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ఉపయోగించండి.
x^{2}-xy+\frac{1}{4}y^{2}+x^{2}+xy+\frac{1}{4}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
\left(x+\frac{1}{2}y\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ఉపయోగించండి.
2x^{2}-xy+\frac{1}{4}y^{2}+xy+\frac{1}{4}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
2x^{2}ని పొందడం కోసం x^{2} మరియు x^{2}ని జత చేయండి.
2x^{2}+\frac{1}{4}y^{2}+\frac{1}{4}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
0ని పొందడం కోసం -xy మరియు xyని జత చేయండి.
2x^{2}+\frac{1}{2}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
\frac{1}{2}y^{2}ని పొందడం కోసం \frac{1}{4}y^{2} మరియు \frac{1}{4}y^{2}ని జత చేయండి.
2x^{2}+\frac{1}{2}y^{2}+\left(2x-y\right)\left(x+\frac{1}{2}y\right)
x-\frac{1}{2}yతో 2ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
2x^{2}+\frac{1}{2}y^{2}+2x^{2}-\frac{1}{2}y^{2}
2x-yని x+\frac{1}{2}yని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
4x^{2}+\frac{1}{2}y^{2}-\frac{1}{2}y^{2}
4x^{2}ని పొందడం కోసం 2x^{2} మరియు 2x^{2}ని జత చేయండి.
4x^{2}
0ని పొందడం కోసం \frac{1}{2}y^{2} మరియు -\frac{1}{2}y^{2}ని జత చేయండి.
x^{2}-xy+\frac{1}{4}y^{2}+\left(x+\frac{1}{2}y\right)^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
\left(x-\frac{1}{2}y\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ఉపయోగించండి.
x^{2}-xy+\frac{1}{4}y^{2}+x^{2}+xy+\frac{1}{4}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
\left(x+\frac{1}{2}y\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ఉపయోగించండి.
2x^{2}-xy+\frac{1}{4}y^{2}+xy+\frac{1}{4}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
2x^{2}ని పొందడం కోసం x^{2} మరియు x^{2}ని జత చేయండి.
2x^{2}+\frac{1}{4}y^{2}+\frac{1}{4}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
0ని పొందడం కోసం -xy మరియు xyని జత చేయండి.
2x^{2}+\frac{1}{2}y^{2}+2\left(x-\frac{1}{2}y\right)\left(x+\frac{1}{2}y\right)
\frac{1}{2}y^{2}ని పొందడం కోసం \frac{1}{4}y^{2} మరియు \frac{1}{4}y^{2}ని జత చేయండి.
2x^{2}+\frac{1}{2}y^{2}+\left(2x-y\right)\left(x+\frac{1}{2}y\right)
x-\frac{1}{2}yతో 2ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
2x^{2}+\frac{1}{2}y^{2}+2x^{2}-\frac{1}{2}y^{2}
2x-yని x+\frac{1}{2}yని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
4x^{2}+\frac{1}{2}y^{2}-\frac{1}{2}y^{2}
4x^{2}ని పొందడం కోసం 2x^{2} మరియు 2x^{2}ని జత చేయండి.
4x^{2}
0ని పొందడం కోసం \frac{1}{2}y^{2} మరియు -\frac{1}{2}y^{2}ని జత చేయండి.