మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x^{2}+8x+16=0
\left(x+4\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ఉపయోగించండి.
a+b=8 ab=16
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}+8x+16ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,16 2,8 4,4
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 16ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+16=17 2+8=10 4+4=8
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=4 b=4
సమ్ 8ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x+4\right)\left(x+4\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
\left(x+4\right)^{2}
ద్విపద చతురస్రం వలె తిరిగి వ్రాయండి.
x=-4
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x+4=0ని పరిష్కరించండి.
x^{2}+8x+16=0
\left(x+4\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ఉపయోగించండి.
a+b=8 ab=1\times 16=16
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx+16 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,16 2,8 4,4
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 16ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+16=17 2+8=10 4+4=8
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=4 b=4
సమ్ 8ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}+4x\right)+\left(4x+16\right)
\left(x^{2}+4x\right)+\left(4x+16\right)ని x^{2}+8x+16 వలె తిరిగి వ్రాయండి.
x\left(x+4\right)+4\left(x+4\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 4 ఫ్యాక్టర్ చేయండి.
\left(x+4\right)\left(x+4\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x+4ని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(x+4\right)^{2}
ద్విపద చతురస్రం వలె తిరిగి వ్రాయండి.
x=-4
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x+4=0ని పరిష్కరించండి.
x^{2}+8x+16=0
\left(x+4\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ఉపయోగించండి.
x=\frac{-8±\sqrt{8^{2}-4\times 16}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో 8 మరియు c స్థానంలో 16 ప్రతిక్షేపించండి.
x=\frac{-8±\sqrt{64-4\times 16}}{2}
8 వర్గము.
x=\frac{-8±\sqrt{64-64}}{2}
-4 సార్లు 16ని గుణించండి.
x=\frac{-8±\sqrt{0}}{2}
-64కు 64ని కూడండి.
x=-\frac{8}{2}
0 వర్గమూలాన్ని తీసుకోండి.
x=-4
2తో -8ని భాగించండి.
\sqrt{\left(x+4\right)^{2}}=\sqrt{0}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x+4=0 x+4=0
సరళీకృతం చేయండి.
x=-4 x=-4
సమీకరణము యొక్క రెండు భాగాల నుండి 4ని వ్యవకలనం చేయండి.
x=-4
సమీకరణం ఇప్పుడు పరిష్కరించబడింది. పరిష్కారాలు ఒకటే.