మెయిన్ కంటెంట్ కు వెళ్లండి
మూల్యాంకనం చేయండి
Tick mark Image
విస్తరించండి
Tick mark Image

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\left(a^{2}-4ab+4b^{2}\right)\left(a+2b\right)^{2}-\left(a^{2}+4b^{2}\right)^{2}
\left(a-2b\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ఉపయోగించండి.
\left(a^{2}-4ab+4b^{2}\right)\left(a^{2}+4ab+4b^{2}\right)-\left(a^{2}+4b^{2}\right)^{2}
\left(a+2b\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ఉపయోగించండి.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{2}+4b^{2}\right)^{2}
a^{2}-4ab+4b^{2}ని a^{2}+4ab+4b^{2}ని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(\left(a^{2}\right)^{2}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
\left(a^{2}+4b^{2}\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ఉపయోగించండి.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
ఒక సంఖ్య యొక్క ఘాతముని మరొక ఘాతముతో హెచ్చించడం కోసం ఘాతాంకాలను గుణించండి. 2 మరియు 2ని గుణించి 4 పొందండి.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16b^{4}\right)
ఒక సంఖ్య యొక్క ఘాతముని మరొక ఘాతముతో హెచ్చించడం కోసం ఘాతాంకాలను గుణించండి. 2 మరియు 2ని గుణించి 4 పొందండి.
a^{4}-8a^{2}b^{2}+16b^{4}-a^{4}-8a^{2}b^{2}-16b^{4}
a^{4}+8a^{2}b^{2}+16b^{4} యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
-8a^{2}b^{2}+16b^{4}-8a^{2}b^{2}-16b^{4}
0ని పొందడం కోసం a^{4} మరియు -a^{4}ని జత చేయండి.
-16a^{2}b^{2}+16b^{4}-16b^{4}
-16a^{2}b^{2}ని పొందడం కోసం -8a^{2}b^{2} మరియు -8a^{2}b^{2}ని జత చేయండి.
-16a^{2}b^{2}
0ని పొందడం కోసం 16b^{4} మరియు -16b^{4}ని జత చేయండి.
\left(a^{2}-4ab+4b^{2}\right)\left(a+2b\right)^{2}-\left(a^{2}+4b^{2}\right)^{2}
\left(a-2b\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ఉపయోగించండి.
\left(a^{2}-4ab+4b^{2}\right)\left(a^{2}+4ab+4b^{2}\right)-\left(a^{2}+4b^{2}\right)^{2}
\left(a+2b\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ఉపయోగించండి.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{2}+4b^{2}\right)^{2}
a^{2}-4ab+4b^{2}ని a^{2}+4ab+4b^{2}ని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(\left(a^{2}\right)^{2}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
\left(a^{2}+4b^{2}\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(p+q\right)^{2}=p^{2}+2pq+q^{2} ఉపయోగించండి.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16\left(b^{2}\right)^{2}\right)
ఒక సంఖ్య యొక్క ఘాతముని మరొక ఘాతముతో హెచ్చించడం కోసం ఘాతాంకాలను గుణించండి. 2 మరియు 2ని గుణించి 4 పొందండి.
a^{4}-8a^{2}b^{2}+16b^{4}-\left(a^{4}+8a^{2}b^{2}+16b^{4}\right)
ఒక సంఖ్య యొక్క ఘాతముని మరొక ఘాతముతో హెచ్చించడం కోసం ఘాతాంకాలను గుణించండి. 2 మరియు 2ని గుణించి 4 పొందండి.
a^{4}-8a^{2}b^{2}+16b^{4}-a^{4}-8a^{2}b^{2}-16b^{4}
a^{4}+8a^{2}b^{2}+16b^{4} యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
-8a^{2}b^{2}+16b^{4}-8a^{2}b^{2}-16b^{4}
0ని పొందడం కోసం a^{4} మరియు -a^{4}ని జత చేయండి.
-16a^{2}b^{2}+16b^{4}-16b^{4}
-16a^{2}b^{2}ని పొందడం కోసం -8a^{2}b^{2} మరియు -8a^{2}b^{2}ని జత చేయండి.
-16a^{2}b^{2}
0ని పొందడం కోసం 16b^{4} మరియు -16b^{4}ని జత చేయండి.