మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3\left(2x^{2}-7x-4\right)
3 యొక్క లబ్ధమూలమును కనుగొనండి.
a+b=-7 ab=2\left(-4\right)=-8
2x^{2}-7x-4ని పరిగణించండి. గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని 2x^{2}+ax+bx-4 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,-8 2,-4
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, పాజిటివ్ సంఖ్య కంటే కూడా నెగిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -8ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1-8=-7 2-4=-2
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-8 b=1
సమ్ -7ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(2x^{2}-8x\right)+\left(x-4\right)
\left(2x^{2}-8x\right)+\left(x-4\right)ని 2x^{2}-7x-4 వలె తిరిగి వ్రాయండి.
2x\left(x-4\right)+x-4
2x^{2}-8xలో 2xని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(x-4\right)\left(2x+1\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-4ని ఫ్యాక్టర్ అవుట్ చేయండి.
3\left(x-4\right)\left(2x+1\right)
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్‌ప్రెషన్‌ని తిరిగి వ్రాయండి.
6x^{2}-21x-12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 6\left(-12\right)}}{2\times 6}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 6\left(-12\right)}}{2\times 6}
-21 వర్గము.
x=\frac{-\left(-21\right)±\sqrt{441-24\left(-12\right)}}{2\times 6}
-4 సార్లు 6ని గుణించండి.
x=\frac{-\left(-21\right)±\sqrt{441+288}}{2\times 6}
-24 సార్లు -12ని గుణించండి.
x=\frac{-\left(-21\right)±\sqrt{729}}{2\times 6}
288కు 441ని కూడండి.
x=\frac{-\left(-21\right)±27}{2\times 6}
729 వర్గమూలాన్ని తీసుకోండి.
x=\frac{21±27}{2\times 6}
-21 సంఖ్య యొక్క వ్యతిరేకం 21.
x=\frac{21±27}{12}
2 సార్లు 6ని గుణించండి.
x=\frac{48}{12}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{21±27}{12} సమీకరణాన్ని పరిష్కరించండి. 27కు 21ని కూడండి.
x=4
12తో 48ని భాగించండి.
x=-\frac{6}{12}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{21±27}{12} సమీకరణాన్ని పరిష్కరించండి. 27ని 21 నుండి వ్యవకలనం చేయండి.
x=-\frac{1}{2}
6ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-6}{12} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
6x^{2}-21x-12=6\left(x-4\right)\left(x-\left(-\frac{1}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 4ని మరియు x_{2} కోసం -\frac{1}{2}ని ప్రతిక్షేపించండి.
6x^{2}-21x-12=6\left(x-4\right)\left(x+\frac{1}{2}\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.
6x^{2}-21x-12=6\left(x-4\right)\times \frac{2x+1}{2}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా xకు \frac{1}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
6x^{2}-21x-12=3\left(x-4\right)\left(2x+1\right)
6 మరియు 2లో అతిపెద్ద ఉమ్మడి కారకము 2ను తీసివేయండి.