మూల్యాంకనం చేయండి
8\left(a^{4}-b^{4}\right)
విస్తరించండి
8a^{4}-8b^{4}
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
9\left(a^{2}\right)^{2}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
\left(3a^{2}-b^{2}\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ఉపయోగించండి.
9a^{4}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
ఒక సంఖ్య యొక్క ఘాతముని మరొక ఘాతముతో హెచ్చించడం కోసం ఘాతాంకాలను గుణించండి. 2 మరియు 2ని గుణించి 4 పొందండి.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{2}-3b^{2}\right)^{2}
ఒక సంఖ్య యొక్క ఘాతముని మరొక ఘాతముతో హెచ్చించడం కోసం ఘాతాంకాలను గుణించండి. 2 మరియు 2ని గుణించి 4 పొందండి.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
\left(a^{2}-3b^{2}\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ఉపయోగించండి.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
ఒక సంఖ్య యొక్క ఘాతముని మరొక ఘాతముతో హెచ్చించడం కోసం ఘాతాంకాలను గుణించండి. 2 మరియు 2ని గుణించి 4 పొందండి.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9b^{4}\right)
ఒక సంఖ్య యొక్క ఘాతముని మరొక ఘాతముతో హెచ్చించడం కోసం ఘాతాంకాలను గుణించండి. 2 మరియు 2ని గుణించి 4 పొందండి.
9a^{4}-6a^{2}b^{2}+b^{4}-a^{4}+6a^{2}b^{2}-9b^{4}
a^{4}-6a^{2}b^{2}+9b^{4} యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
8a^{4}-6a^{2}b^{2}+b^{4}+6a^{2}b^{2}-9b^{4}
8a^{4}ని పొందడం కోసం 9a^{4} మరియు -a^{4}ని జత చేయండి.
8a^{4}+b^{4}-9b^{4}
0ని పొందడం కోసం -6a^{2}b^{2} మరియు 6a^{2}b^{2}ని జత చేయండి.
8a^{4}-8b^{4}
-8b^{4}ని పొందడం కోసం b^{4} మరియు -9b^{4}ని జత చేయండి.
9\left(a^{2}\right)^{2}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
\left(3a^{2}-b^{2}\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ఉపయోగించండి.
9a^{4}-6a^{2}b^{2}+\left(b^{2}\right)^{2}-\left(a^{2}-3b^{2}\right)^{2}
ఒక సంఖ్య యొక్క ఘాతముని మరొక ఘాతముతో హెచ్చించడం కోసం ఘాతాంకాలను గుణించండి. 2 మరియు 2ని గుణించి 4 పొందండి.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{2}-3b^{2}\right)^{2}
ఒక సంఖ్య యొక్క ఘాతముని మరొక ఘాతముతో హెచ్చించడం కోసం ఘాతాంకాలను గుణించండి. 2 మరియు 2ని గుణించి 4 పొందండి.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(\left(a^{2}\right)^{2}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
\left(a^{2}-3b^{2}\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(p-q\right)^{2}=p^{2}-2pq+q^{2} ఉపయోగించండి.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9\left(b^{2}\right)^{2}\right)
ఒక సంఖ్య యొక్క ఘాతముని మరొక ఘాతముతో హెచ్చించడం కోసం ఘాతాంకాలను గుణించండి. 2 మరియు 2ని గుణించి 4 పొందండి.
9a^{4}-6a^{2}b^{2}+b^{4}-\left(a^{4}-6a^{2}b^{2}+9b^{4}\right)
ఒక సంఖ్య యొక్క ఘాతముని మరొక ఘాతముతో హెచ్చించడం కోసం ఘాతాంకాలను గుణించండి. 2 మరియు 2ని గుణించి 4 పొందండి.
9a^{4}-6a^{2}b^{2}+b^{4}-a^{4}+6a^{2}b^{2}-9b^{4}
a^{4}-6a^{2}b^{2}+9b^{4} యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
8a^{4}-6a^{2}b^{2}+b^{4}+6a^{2}b^{2}-9b^{4}
8a^{4}ని పొందడం కోసం 9a^{4} మరియు -a^{4}ని జత చేయండి.
8a^{4}+b^{4}-9b^{4}
0ని పొందడం కోసం -6a^{2}b^{2} మరియు 6a^{2}b^{2}ని జత చేయండి.
8a^{4}-8b^{4}
-8b^{4}ని పొందడం కోసం b^{4} మరియు -9b^{4}ని జత చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}