మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-\left(3x-2\right)^{2}-40x^{2}=-205
\left(2x+4\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ఉపయోగించండి.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-\left(9x^{2}-12x+4\right)-40x^{2}=-205
\left(3x-2\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ఉపయోగించండి.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-9x^{2}+12x-4-40x^{2}=-205
9x^{2}-12x+4 యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x-4=-205
-49x^{2}ని పొందడం కోసం -9x^{2} మరియు -40x^{2}ని జత చేయండి.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x-4+205=0
రెండు వైపులా 205ని జోడించండి.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x+201=0
201ని పొందడం కోసం -4 మరియు 205ని కూడండి.
4x^{2}+16x+16+\left(-35x+15x^{2}\right)\left(7+3x\right)-49x^{2}+12x+201=0
7-3xతో -5xని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
4x^{2}+16x+16-245x+45x^{3}-49x^{2}+12x+201=0
-35x+15x^{2}ని 7+3xని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
4x^{2}-229x+16+45x^{3}-49x^{2}+12x+201=0
-229xని పొందడం కోసం 16x మరియు -245xని జత చేయండి.
-45x^{2}-229x+16+45x^{3}+12x+201=0
-45x^{2}ని పొందడం కోసం 4x^{2} మరియు -49x^{2}ని జత చేయండి.
-45x^{2}-217x+16+45x^{3}+201=0
-217xని పొందడం కోసం -229x మరియు 12xని జత చేయండి.
-45x^{2}-217x+217+45x^{3}=0
217ని పొందడం కోసం 16 మరియు 201ని కూడండి.
45x^{3}-45x^{2}-217x+217=0
ప్రామాణిక ఆకృతిలో ఉంచడం కోసం సమీకరణమును సర్దుబాటు చేయండి. విలువలను ఎక్కువ నుండి తక్కువ ఘాతం క్రమంలో ఏర్పాటు చేయండి.
±\frac{217}{45},±\frac{217}{15},±\frac{217}{9},±\frac{217}{5},±\frac{217}{3},±217,±\frac{31}{45},±\frac{31}{15},±\frac{31}{9},±\frac{31}{5},±\frac{31}{3},±31,±\frac{7}{45},±\frac{7}{15},±\frac{7}{9},±\frac{7}{5},±\frac{7}{3},±7,±\frac{1}{45},±\frac{1}{15},±\frac{1}{9},±\frac{1}{5},±\frac{1}{3},±1
పరిమేయ మూల సిద్ధాంతం ప్రకారం, పాలీనామియల్ యొక్క అన్ని రేషనల్ రూట్‌లు రూపంలో \frac{p}{q} ఉండాలి, ఇందులో p అనేది కాన్‌స్టంట్ టర్మ్ 217ని భాగిస్తుంది మరియు q అనేది లీడింగ్ కోఎఫిషియంట్ 45ని భాగిస్తుంది. మొత్తం క్యాండిడేట్‌లను \frac{p}{q} జాబితా చేయండి.
x=1
అత్యంత చిన్న విలువ నుండి ఖచ్చితమైన విలువ వరకు, అన్ని పూర్ణాంకం విలువలను ప్రయత్నించడం ద్వారా అటువంటి ఒక రూట్‌ను కనుగొనండి. పూర్ణాంకం రూట్‌లు కనుగొనబడకుంటే, ఫ్రాక్షన్‌లను ప్రయత్నించండి.
45x^{2}-217=0
ఫ్యాక్టర్ సిద్ధాంతం ప్రకారం, x-k అనేది ప్రతి రూట్ k యొక్క పాలీనామియల్‌కు ఒక ఫ్యాక్టర్. 45x^{3}-45x^{2}-217x+217ని x-1తో భాగించి 45x^{2}-217ని పొందండి. ఫలితం మరియు 0 సమానంగా ఉన్నప్పుడు ఎక్స్‌ప్రెషన్‌ను పరిష్కరించండి.
x=\frac{0±\sqrt{0^{2}-4\times 45\left(-217\right)}}{2\times 45}
ax^{2}+bx+c=0 ఫారమ్ యొక్క అన్ని సమీకరణాలను దిగువ క్వాడ్రాటిక్ సూత్రాన్ని ఉపయోగించి పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. క్వాడ్రాటిక్ సూత్రంలో 45 స్థానంలో a, 0 స్థానంలో b -217 స్థానంలో c ఉంచండి.
x=\frac{0±6\sqrt{1085}}{90}
లెక్కలు చేయండి.
x=-\frac{\sqrt{1085}}{15} x=\frac{\sqrt{1085}}{15}
± ప్లస్ మరియు ± మైనస్ అయినప్పుడు సమీకరణం 45x^{2}-217=0ని పరిష్కరించండి.
x=1 x=-\frac{\sqrt{1085}}{15} x=\frac{\sqrt{1085}}{15}
కనుగొన్న అన్ని పరిష్కారాలను జాబితా చేయండి.