మూల్యాంకనం చేయండి
\frac{15}{16}=0.9375
లబ్ధమూలము
\frac{3 \cdot 5}{2 ^ {4}} = 0.9375
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\left(-\frac{1}{4}+a^{2}\right)\left(a^{2}+\frac{1}{4}\right)+\left(1-a^{2}\right)\left(a^{2}+1\right)
-\frac{1}{2}-aని \frac{1}{2}-aని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
-\frac{1}{16}+a^{4}+\left(1-a^{2}\right)\left(a^{2}+1\right)
-\frac{1}{4}+a^{2}ని a^{2}+\frac{1}{4}ని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
-\frac{1}{16}+a^{4}+1-\left(a^{2}\right)^{2}
\left(1-a^{2}\right)\left(a^{2}+1\right)ని పరిగణించండి. ఈ నియమాన్ని ఉపయోగించి గుణకారాన్ని చతరుస్రాల మధ్య తేడా వలె మార్చండి: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 వర్గము.
-\frac{1}{16}+a^{4}+1-a^{4}
ఒక సంఖ్య యొక్క ఘాతముని మరొక ఘాతముతో హెచ్చించడం కోసం ఘాతాంకాలను గుణించండి. 2 మరియు 2ని గుణించి 4 పొందండి.
\frac{15}{16}+a^{4}-a^{4}
\frac{15}{16}ని పొందడం కోసం -\frac{1}{16} మరియు 1ని కూడండి.
\frac{15}{16}
0ని పొందడం కోసం a^{4} మరియు -a^{4}ని జత చేయండి.
\frac{\left(-1-2a\right)\left(1-2a\right)\left(4a^{2}+1\right)+16\left(1-a^{2}\right)\left(a^{2}+1\right)}{16}
\frac{1}{16} యొక్క లబ్ధమూలమును కనుగొనండి.
\frac{15}{16}
సరళీకృతం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}