మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\left(\frac{1}{3}x-\frac{1}{2}\right)^{3}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ఉపయోగించండి.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}x\right)^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right)ని పరిగణించండి. ఈ నియమాన్ని ఉపయోగించి గుణకారాన్ని చతరుస్రాల మధ్య తేడా వలె మార్చండి: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. \frac{1}{2} వర్గము.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}\right)^{2}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\left(\frac{1}{3}x\right)^{2}ని విస్తరించండి.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{9}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
2 యొక్క ఘాతంలో \frac{1}{3} ఉంచి గణించి, \frac{1}{9}ని పొందండి.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\frac{1}{9}x^{2}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\frac{1}{9}x^{2}-\frac{1}{4} యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x-\frac{1}{8}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
-\frac{5}{18}x^{2}ని పొందడం కోసం -\frac{1}{6}x^{2} మరియు -\frac{1}{9}x^{2}ని జత చేయండి.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\frac{1}{8}ని పొందడం కోసం -\frac{1}{8} మరియు \frac{1}{4}ని కూడండి.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{27}x^{3}+\frac{5}{18}x^{2}=0
\frac{1}{3}x-\frac{5}{2}తో -\frac{1}{9}x^{2}ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}+\frac{5}{18}x^{2}=0
0ని పొందడం కోసం \frac{1}{27}x^{3} మరియు -\frac{1}{27}x^{3}ని జత చేయండి.
\frac{1}{4}x+\frac{1}{8}=0
0ని పొందడం కోసం -\frac{5}{18}x^{2} మరియు \frac{5}{18}x^{2}ని జత చేయండి.
\frac{1}{4}x=-\frac{1}{8}
రెండు భాగాల నుండి \frac{1}{8}ని వ్యవకలనం చేయండి. సున్నా నుండి ఏ సంఖ్యను తీసివేసినా కూడా దాని రుణాత్మక రూపం వస్తుంది.
x=-\frac{1}{8}\times 4
సమీకరణంలోని రెండు వైపులను 4తో, దాని పరస్పర సంఖ్య \frac{1}{4}తో గుణించండి.
x=-\frac{1}{2}
-\frac{1}{2}ని పొందడం కోసం -\frac{1}{8} మరియు 4ని గుణించండి.