మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x^{2}-x-6=0
రెండు భాగాల నుండి 6ని వ్యవకలనం చేయండి.
a+b=-1 ab=-6
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}-x-6ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,-6 2,-3
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, పాజిటివ్ సంఖ్య కంటే కూడా నెగిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -6ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1-6=-5 2-3=-1
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-3 b=2
సమ్ -1ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x-3\right)\left(x+2\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
x=3 x=-2
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-3=0 మరియు x+2=0ని పరిష్కరించండి.
x^{2}-x-6=0
రెండు భాగాల నుండి 6ని వ్యవకలనం చేయండి.
a+b=-1 ab=1\left(-6\right)=-6
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx-6 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,-6 2,-3
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, పాజిటివ్ సంఖ్య కంటే కూడా నెగిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -6ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1-6=-5 2-3=-1
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-3 b=2
సమ్ -1ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}-3x\right)+\left(2x-6\right)
\left(x^{2}-3x\right)+\left(2x-6\right)ని x^{2}-x-6 వలె తిరిగి వ్రాయండి.
x\left(x-3\right)+2\left(x-3\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 2 ఫ్యాక్టర్ చేయండి.
\left(x-3\right)\left(x+2\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-3ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=3 x=-2
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-3=0 మరియు x+2=0ని పరిష్కరించండి.
x^{2}-x=6
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x^{2}-x-6=6-6
సమీకరణము యొక్క రెండు భాగాల నుండి 6ని వ్యవకలనం చేయండి.
x^{2}-x-6=0
6ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో -1 మరియు c స్థానంలో -6 ప్రతిక్షేపించండి.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2}
-4 సార్లు -6ని గుణించండి.
x=\frac{-\left(-1\right)±\sqrt{25}}{2}
24కు 1ని కూడండి.
x=\frac{-\left(-1\right)±5}{2}
25 వర్గమూలాన్ని తీసుకోండి.
x=\frac{1±5}{2}
-1 సంఖ్య యొక్క వ్యతిరేకం 1.
x=\frac{6}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{1±5}{2} సమీకరణాన్ని పరిష్కరించండి. 5కు 1ని కూడండి.
x=3
2తో 6ని భాగించండి.
x=-\frac{4}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{1±5}{2} సమీకరణాన్ని పరిష్కరించండి. 5ని 1 నుండి వ్యవకలనం చేయండి.
x=-2
2తో -4ని భాగించండి.
x=3 x=-2
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
x^{2}-x=6
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
x రాశి యొక్క గుణకము -1ని 2తో భాగించి -\frac{1}{2}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -\frac{1}{2} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా -\frac{1}{2}ని వర్గము చేయండి.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
\frac{1}{4}కు 6ని కూడండి.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
కారకం x^{2}-x+\frac{1}{4}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
సరళీకృతం చేయండి.
x=3 x=-2
సమీకరణం యొక్క రెండు వైపులా \frac{1}{2}ని కూడండి.