మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=-6 ab=9
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}-6x+9ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,-9 -3,-3
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 9ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1-9=-10 -3-3=-6
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-3 b=-3
సమ్ -6ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x-3\right)\left(x-3\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
\left(x-3\right)^{2}
ద్విపద చతురస్రం వలె తిరిగి వ్రాయండి.
x=3
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-3=0ని పరిష్కరించండి.
a+b=-6 ab=1\times 9=9
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx+9 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,-9 -3,-3
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 9ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1-9=-10 -3-3=-6
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-3 b=-3
సమ్ -6ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}-3x\right)+\left(-3x+9\right)
\left(x^{2}-3x\right)+\left(-3x+9\right)ని x^{2}-6x+9 వలె తిరిగి వ్రాయండి.
x\left(x-3\right)-3\left(x-3\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో -3 ఫ్యాక్టర్ చేయండి.
\left(x-3\right)\left(x-3\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-3ని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(x-3\right)^{2}
ద్విపద చతురస్రం వలె తిరిగి వ్రాయండి.
x=3
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-3=0ని పరిష్కరించండి.
x^{2}-6x+9=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో -6 మరియు c స్థానంలో 9 ప్రతిక్షేపించండి.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
-6 వర్గము.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
-4 సార్లు 9ని గుణించండి.
x=\frac{-\left(-6\right)±\sqrt{0}}{2}
-36కు 36ని కూడండి.
x=-\frac{-6}{2}
0 వర్గమూలాన్ని తీసుకోండి.
x=\frac{6}{2}
-6 సంఖ్య యొక్క వ్యతిరేకం 6.
x=3
2తో 6ని భాగించండి.
x^{2}-6x+9=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
\left(x-3\right)^{2}=0
x^{2}-6x+9 లబ్ధమూలము. సాధారణంగా, x^{2}+bx+c ఒక సంపూర్ణచతురస్రము అయితే, ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2} రూపంలో లబ్ధమూలములను కనుగొనవచ్చు.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x-3=0 x-3=0
సరళీకృతం చేయండి.
x=3 x=3
సమీకరణం యొక్క రెండు వైపులా 3ని కూడండి.
x=3
సమీకరణం ఇప్పుడు పరిష్కరించబడింది. పరిష్కారాలు ఒకటే.