మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=-3 ab=1\left(-4\right)=-4
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని x^{2}+ax+bx-4 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,-4 2,-2
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, పాజిటివ్ సంఖ్య కంటే కూడా నెగిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -4ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1-4=-3 2-2=0
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-4 b=1
సమ్ -3ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}-4x\right)+\left(x-4\right)
\left(x^{2}-4x\right)+\left(x-4\right)ని x^{2}-3x-4 వలె తిరిగి వ్రాయండి.
x\left(x-4\right)+x-4
x^{2}-4xలో xని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(x-4\right)\left(x+1\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-4ని ఫ్యాక్టర్ అవుట్ చేయండి.
x^{2}-3x-4=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
-3 వర్గము.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
-4 సార్లు -4ని గుణించండి.
x=\frac{-\left(-3\right)±\sqrt{25}}{2}
16కు 9ని కూడండి.
x=\frac{-\left(-3\right)±5}{2}
25 వర్గమూలాన్ని తీసుకోండి.
x=\frac{3±5}{2}
-3 సంఖ్య యొక్క వ్యతిరేకం 3.
x=\frac{8}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{3±5}{2} సమీకరణాన్ని పరిష్కరించండి. 5కు 3ని కూడండి.
x=4
2తో 8ని భాగించండి.
x=-\frac{2}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{3±5}{2} సమీకరణాన్ని పరిష్కరించండి. 5ని 3 నుండి వ్యవకలనం చేయండి.
x=-1
2తో -2ని భాగించండి.
x^{2}-3x-4=\left(x-4\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 4ని మరియు x_{2} కోసం -1ని ప్రతిక్షేపించండి.
x^{2}-3x-4=\left(x-4\right)\left(x+1\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.