మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=1 ab=1\left(-42\right)=-42
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని x^{2}+ax+bx-42 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,42 -2,21 -3,14 -6,7
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -42ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1+42=41 -2+21=19 -3+14=11 -6+7=1
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-6 b=7
సమ్ 1ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}-6x\right)+\left(7x-42\right)
\left(x^{2}-6x\right)+\left(7x-42\right)ని x^{2}+x-42 వలె తిరిగి వ్రాయండి.
x\left(x-6\right)+7\left(x-6\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 7 ఫ్యాక్టర్ చేయండి.
\left(x-6\right)\left(x+7\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-6ని ఫ్యాక్టర్ అవుట్ చేయండి.
x^{2}+x-42=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-1±\sqrt{1^{2}-4\left(-42\right)}}{2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-1±\sqrt{1-4\left(-42\right)}}{2}
1 వర్గము.
x=\frac{-1±\sqrt{1+168}}{2}
-4 సార్లు -42ని గుణించండి.
x=\frac{-1±\sqrt{169}}{2}
168కు 1ని కూడండి.
x=\frac{-1±13}{2}
169 వర్గమూలాన్ని తీసుకోండి.
x=\frac{12}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-1±13}{2} సమీకరణాన్ని పరిష్కరించండి. 13కు -1ని కూడండి.
x=6
2తో 12ని భాగించండి.
x=-\frac{14}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-1±13}{2} సమీకరణాన్ని పరిష్కరించండి. 13ని -1 నుండి వ్యవకలనం చేయండి.
x=-7
2తో -14ని భాగించండి.
x^{2}+x-42=\left(x-6\right)\left(x-\left(-7\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 6ని మరియు x_{2} కోసం -7ని ప్రతిక్షేపించండి.
x^{2}+x-42=\left(x-6\right)\left(x+7\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.