మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=5 ab=-6
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}+5x-6ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,6 -2,3
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -6ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1+6=5 -2+3=1
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-1 b=6
సమ్ 5ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x-1\right)\left(x+6\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
x=1 x=-6
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-1=0 మరియు x+6=0ని పరిష్కరించండి.
a+b=5 ab=1\left(-6\right)=-6
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx-6 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,6 -2,3
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -6ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1+6=5 -2+3=1
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-1 b=6
సమ్ 5ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(x^{2}-x\right)+\left(6x-6\right)
\left(x^{2}-x\right)+\left(6x-6\right)ని x^{2}+5x-6 వలె తిరిగి వ్రాయండి.
x\left(x-1\right)+6\left(x-1\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 6 ఫ్యాక్టర్ చేయండి.
\left(x-1\right)\left(x+6\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-1ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=1 x=-6
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-1=0 మరియు x+6=0ని పరిష్కరించండి.
x^{2}+5x-6=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-5±\sqrt{5^{2}-4\left(-6\right)}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో 5 మరియు c స్థానంలో -6 ప్రతిక్షేపించండి.
x=\frac{-5±\sqrt{25-4\left(-6\right)}}{2}
5 వర్గము.
x=\frac{-5±\sqrt{25+24}}{2}
-4 సార్లు -6ని గుణించండి.
x=\frac{-5±\sqrt{49}}{2}
24కు 25ని కూడండి.
x=\frac{-5±7}{2}
49 వర్గమూలాన్ని తీసుకోండి.
x=\frac{2}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-5±7}{2} సమీకరణాన్ని పరిష్కరించండి. 7కు -5ని కూడండి.
x=1
2తో 2ని భాగించండి.
x=-\frac{12}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-5±7}{2} సమీకరణాన్ని పరిష్కరించండి. 7ని -5 నుండి వ్యవకలనం చేయండి.
x=-6
2తో -12ని భాగించండి.
x=1 x=-6
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
x^{2}+5x-6=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
x^{2}+5x-6-\left(-6\right)=-\left(-6\right)
సమీకరణం యొక్క రెండు వైపులా 6ని కూడండి.
x^{2}+5x=-\left(-6\right)
-6ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
x^{2}+5x=6
-6ని 0 నుండి వ్యవకలనం చేయండి.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=6+\left(\frac{5}{2}\right)^{2}
x రాశి యొక్క గుణకము 5ని 2తో భాగించి \frac{5}{2}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{5}{2} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+5x+\frac{25}{4}=6+\frac{25}{4}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{5}{2}ని వర్గము చేయండి.
x^{2}+5x+\frac{25}{4}=\frac{49}{4}
\frac{25}{4}కు 6ని కూడండి.
\left(x+\frac{5}{2}\right)^{2}=\frac{49}{4}
కారకం x^{2}+5x+\frac{25}{4}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{5}{2}=\frac{7}{2} x+\frac{5}{2}=-\frac{7}{2}
సరళీకృతం చేయండి.
x=1 x=-6
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{5}{2}ని వ్యవకలనం చేయండి.