మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=4 ab=3
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}+4x+3ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
a=1 b=3
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. అటువంటి పెయిర్ మాత్రమే సిస్టమ్ పరిష్కారమం.
\left(x+1\right)\left(x+3\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
x=-1 x=-3
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x+1=0 మరియు x+3=0ని పరిష్కరించండి.
a+b=4 ab=1\times 3=3
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx+3 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
a=1 b=3
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. అటువంటి పెయిర్ మాత్రమే సిస్టమ్ పరిష్కారమం.
\left(x^{2}+x\right)+\left(3x+3\right)
\left(x^{2}+x\right)+\left(3x+3\right)ని x^{2}+4x+3 వలె తిరిగి వ్రాయండి.
x\left(x+1\right)+3\left(x+1\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 3 ఫ్యాక్టర్ చేయండి.
\left(x+1\right)\left(x+3\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x+1ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=-1 x=-3
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x+1=0 మరియు x+3=0ని పరిష్కరించండి.
x^{2}+4x+3=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-4±\sqrt{4^{2}-4\times 3}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో 4 మరియు c స్థానంలో 3 ప్రతిక్షేపించండి.
x=\frac{-4±\sqrt{16-4\times 3}}{2}
4 వర్గము.
x=\frac{-4±\sqrt{16-12}}{2}
-4 సార్లు 3ని గుణించండి.
x=\frac{-4±\sqrt{4}}{2}
-12కు 16ని కూడండి.
x=\frac{-4±2}{2}
4 వర్గమూలాన్ని తీసుకోండి.
x=-\frac{2}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-4±2}{2} సమీకరణాన్ని పరిష్కరించండి. 2కు -4ని కూడండి.
x=-1
2తో -2ని భాగించండి.
x=-\frac{6}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-4±2}{2} సమీకరణాన్ని పరిష్కరించండి. 2ని -4 నుండి వ్యవకలనం చేయండి.
x=-3
2తో -6ని భాగించండి.
x=-1 x=-3
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
x^{2}+4x+3=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
x^{2}+4x+3-3=-3
సమీకరణము యొక్క రెండు భాగాల నుండి 3ని వ్యవకలనం చేయండి.
x^{2}+4x=-3
3ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
x^{2}+4x+2^{2}=-3+2^{2}
x రాశి యొక్క గుణకము 4ని 2తో భాగించి 2ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి 2 యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+4x+4=-3+4
2 వర్గము.
x^{2}+4x+4=1
4కు -3ని కూడండి.
\left(x+2\right)^{2}=1
x^{2}+4x+4 లబ్ధమూలము. సాధారణంగా, x^{2}+bx+c ఒక సంపూర్ణచతురస్రము అయితే, ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2} రూపంలో లబ్ధమూలములను కనుగొనవచ్చు.
\sqrt{\left(x+2\right)^{2}}=\sqrt{1}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x+2=1 x+2=-1
సరళీకృతం చేయండి.
x=-1 x=-3
సమీకరణము యొక్క రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి.