లబ్ధమూలము
\left(x+4\right)\left(x+6\right)
మూల్యాంకనం చేయండి
\left(x+4\right)\left(x+6\right)
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
a+b=10 ab=1\times 24=24
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని x^{2}+ax+bx+24 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
1,24 2,12 3,8 4,6
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్గా ఉంటాయి. ప్రాడక్ట్ 24ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
1+24=25 2+12=14 3+8=11 4+6=10
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=4 b=6
సమ్ 10ను అందించే పెయిర్ మన పరిష్కారం.
\left(x^{2}+4x\right)+\left(6x+24\right)
\left(x^{2}+4x\right)+\left(6x+24\right)ని x^{2}+10x+24 వలె తిరిగి వ్రాయండి.
x\left(x+4\right)+6\left(x+4\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో 6 ఫ్యాక్టర్ చేయండి.
\left(x+4\right)\left(x+6\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x+4ని ఫ్యాక్టర్ అవుట్ చేయండి.
x^{2}+10x+24=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-10±\sqrt{10^{2}-4\times 24}}{2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-10±\sqrt{100-4\times 24}}{2}
10 వర్గము.
x=\frac{-10±\sqrt{100-96}}{2}
-4 సార్లు 24ని గుణించండి.
x=\frac{-10±\sqrt{4}}{2}
-96కు 100ని కూడండి.
x=\frac{-10±2}{2}
4 వర్గమూలాన్ని తీసుకోండి.
x=-\frac{8}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-10±2}{2} సమీకరణాన్ని పరిష్కరించండి. 2కు -10ని కూడండి.
x=-4
2తో -8ని భాగించండి.
x=-\frac{12}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-10±2}{2} సమీకరణాన్ని పరిష్కరించండి. 2ని -10 నుండి వ్యవకలనం చేయండి.
x=-6
2తో -12ని భాగించండి.
x^{2}+10x+24=\left(x-\left(-4\right)\right)\left(x-\left(-6\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం -4ని మరియు x_{2} కోసం -6ని ప్రతిక్షేపించండి.
x^{2}+10x+24=\left(x+4\right)\left(x+6\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}