లబ్ధమూలము
\left(m-1\right)\left(m+1\right)\left(m^{2}+4\right)
మూల్యాంకనం చేయండి
m^{4}+3m^{2}-4
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
m^{4}+3m^{2}-4=0
ఎక్స్ప్రెషన్ని ఫ్యాక్టర్ చేయడం కోసం, 0కి ఎక్స్ప్రెషన్ సమానంగా ఉన్నప్పుడు ఎక్స్ప్రెషన్ను పరిష్కరించండి.
±4,±2,±1
పరిమేయ మూల సిద్ధాంతం ప్రకారం, పాలీనామియల్ యొక్క అన్ని రేషనల్ రూట్లు రూపంలో \frac{p}{q} ఉండాలి, ఇందులో p అనేది కాన్స్టంట్ టర్మ్ -4ని భాగిస్తుంది మరియు q అనేది లీడింగ్ కోఎఫిషియంట్ 1ని భాగిస్తుంది. మొత్తం క్యాండిడేట్లను \frac{p}{q} జాబితా చేయండి.
m=1
అత్యంత చిన్న విలువ నుండి ఖచ్చితమైన విలువ వరకు, అన్ని పూర్ణాంకం విలువలను ప్రయత్నించడం ద్వారా అటువంటి ఒక రూట్ను కనుగొనండి. పూర్ణాంకం రూట్లు కనుగొనబడకుంటే, ఫ్రాక్షన్లను ప్రయత్నించండి.
m^{3}+m^{2}+4m+4=0
ఫ్యాక్టర్ సిద్ధాంతం ప్రకారం, m-k అనేది ప్రతి రూట్ k యొక్క పాలీనామియల్కు ఒక ఫ్యాక్టర్. m^{4}+3m^{2}-4ని m-1తో భాగించి m^{3}+m^{2}+4m+4ని పొందండి. ఫలితాన్ని ఫ్యాక్టర్ చేయడం కోసం, 0కి ఎక్స్ప్రెషన్ సమానంగా ఉన్నప్పుడు ఎక్స్ప్రెషన్ను పరిష్కరించండి.
±4,±2,±1
పరిమేయ మూల సిద్ధాంతం ప్రకారం, పాలీనామియల్ యొక్క అన్ని రేషనల్ రూట్లు రూపంలో \frac{p}{q} ఉండాలి, ఇందులో p అనేది కాన్స్టంట్ టర్మ్ 4ని భాగిస్తుంది మరియు q అనేది లీడింగ్ కోఎఫిషియంట్ 1ని భాగిస్తుంది. మొత్తం క్యాండిడేట్లను \frac{p}{q} జాబితా చేయండి.
m=-1
అత్యంత చిన్న విలువ నుండి ఖచ్చితమైన విలువ వరకు, అన్ని పూర్ణాంకం విలువలను ప్రయత్నించడం ద్వారా అటువంటి ఒక రూట్ను కనుగొనండి. పూర్ణాంకం రూట్లు కనుగొనబడకుంటే, ఫ్రాక్షన్లను ప్రయత్నించండి.
m^{2}+4=0
ఫ్యాక్టర్ సిద్ధాంతం ప్రకారం, m-k అనేది ప్రతి రూట్ k యొక్క పాలీనామియల్కు ఒక ఫ్యాక్టర్. m^{3}+m^{2}+4m+4ని m+1తో భాగించి m^{2}+4ని పొందండి. ఫలితాన్ని ఫ్యాక్టర్ చేయడం కోసం, 0కి ఎక్స్ప్రెషన్ సమానంగా ఉన్నప్పుడు ఎక్స్ప్రెషన్ను పరిష్కరించండి.
m=\frac{0±\sqrt{0^{2}-4\times 1\times 4}}{2}
ax^{2}+bx+c=0 ఫారమ్ యొక్క అన్ని సమీకరణాలను దిగువ క్వాడ్రాటిక్ సూత్రాన్ని ఉపయోగించి పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. క్వాడ్రాటిక్ సూత్రంలో 1 స్థానంలో a, 0 స్థానంలో b 4 స్థానంలో c ఉంచండి.
m=\frac{0±\sqrt{-16}}{2}
లెక్కలు చేయండి.
m^{2}+4
పాలీనామియల్ m^{2}+4లో రేషనల్ రూట్లు లేవు కనుక దీనిని ఫ్యాక్టర్ చేయలేరు.
\left(m-1\right)\left(m+1\right)\left(m^{2}+4\right)
పొందిన రూట్లను ఉపయోగించి ఫ్యాక్టర్ చేసిన ఎక్స్ప్రెషన్ని తిరిగి వ్రాయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}