yని పరిష్కరించండి (సంకీర్ణ పరిష్కారం)
y=e^{4\left(Im(\frac{1}{x})+iRe(\frac{1}{x})\right)\left(\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}\right)arg(x^{x^{x}})-8\pi Re(\frac{1}{x})n_{1}i\left(\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}\right)-8\pi Im(\frac{1}{x})n_{1}\left(\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}\right)}\left(|x^{x^{x}}|\right)^{4\left(Re(\frac{1}{x})-iIm(\frac{1}{x})\right)\left(\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}\right)}
n_{1}\in \mathrm{Z}
x\neq 0
yని పరిష్కరించండి
y=\sqrt{\left(x^{x^{x}}\right)^{4x}-3}
y=-\sqrt{\left(x^{x^{x}}\right)^{4x}-3}\text{, }\left(x^{x^{x+1}}\geq \sqrt[4]{3}\text{ and }Numerator(\frac{1}{4x})\text{bmod}2=1\text{ and }Denominator(\frac{1}{4x})\text{bmod}2=1\text{ and }x>0\right)\text{ or }\left(x>0\text{ and }x^{x^{x+1}}\geq \sqrt[4]{3}\text{ and }x^{x^{x}}\geq 0\right)\text{ or }\left(x<0\text{ and }Denominator(x^{x})\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\left(-x\right)^{x^{x+1}}\geq \sqrt[4]{3}\text{ and }Numerator(\frac{1}{4x})\text{bmod}2=1\text{ and }Denominator(\frac{1}{4x})\text{bmod}2=1\right)\text{ or }\left(x<0\text{ and }Denominator(x^{x})\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\left(-x\right)^{x^{x+1}}\geq \sqrt[4]{3}\text{ and }x^{x^{x}}\geq 0\right)
క్విజ్
Algebra
దీని మాదిరిగా 5 ప్రాబ్లెమ్లు ఉన్నాయి:
\sqrt[ 4x ]{ { y }^{ 2 } +3 } = { x }^{ { x }^{ x } }
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}