మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\sqrt{x}=3-\sqrt{x+1}
సమీకరణము యొక్క రెండు భాగాల నుండి \sqrt{x+1}ని వ్యవకలనం చేయండి.
\left(\sqrt{x}\right)^{2}=\left(3-\sqrt{x+1}\right)^{2}
సమీకరణము యొక్క రెండు భాగాలను వర్గము చేయండి.
x=\left(3-\sqrt{x+1}\right)^{2}
2 యొక్క ఘాతంలో \sqrt{x} ఉంచి గణించి, xని పొందండి.
x=9-6\sqrt{x+1}+\left(\sqrt{x+1}\right)^{2}
\left(3-\sqrt{x+1}\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ఉపయోగించండి.
x=9-6\sqrt{x+1}+x+1
2 యొక్క ఘాతంలో \sqrt{x+1} ఉంచి గణించి, x+1ని పొందండి.
x=10-6\sqrt{x+1}+x
10ని పొందడం కోసం 9 మరియు 1ని కూడండి.
x+6\sqrt{x+1}=10+x
రెండు వైపులా 6\sqrt{x+1}ని జోడించండి.
x+6\sqrt{x+1}-x=10
రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
6\sqrt{x+1}=10
0ని పొందడం కోసం x మరియు -xని జత చేయండి.
\sqrt{x+1}=\frac{10}{6}
రెండు వైపులా 6తో భాగించండి.
\sqrt{x+1}=\frac{5}{3}
2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{10}{6} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x+1=\frac{25}{9}
సమీకరణము యొక్క రెండు భాగాలను వర్గము చేయండి.
x+1-1=\frac{25}{9}-1
సమీకరణము యొక్క రెండు భాగాల నుండి 1ని వ్యవకలనం చేయండి.
x=\frac{25}{9}-1
1ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
x=\frac{16}{9}
1ని \frac{25}{9} నుండి వ్యవకలనం చేయండి.
\sqrt{\frac{16}{9}}+\sqrt{\frac{16}{9}+1}=3
మరొక సమీకరణములో xను \frac{16}{9} స్థానంలో ప్రతిక్షేపించండి, \sqrt{x}+\sqrt{x+1}=3.
3=3
సరళీకృతం చేయండి. విలువ x=\frac{16}{9} సమీకరణాన్ని సంతృప్తిపరుస్తుంది.
x=\frac{16}{9}
సమీకరణం \sqrt{x}=-\sqrt{x+1}+3కి విశిష్ట పరిష్కారం ఉంది.