మూల్యాంకనం చేయండి
2\left(\sqrt{15}+3\sqrt{5}\right)\approx 21.162374557
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\sqrt{6}\sqrt{30}+\sqrt{6}\sqrt{10}
\sqrt{30}+\sqrt{10}తో \sqrt{6}ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
\sqrt{6}\sqrt{6}\sqrt{5}+\sqrt{6}\sqrt{10}
కారకం 30=6\times 5. ప్రాడక్ట్ \sqrt{6\times 5} యొక్క స్క్వేర్ రూట్ను స్క్వేర్ రూట్స్ \sqrt{6}\sqrt{5} యొక్క ప్రాడక్ట్ లాగా తిరిగి వ్రాయండి.
6\sqrt{5}+\sqrt{6}\sqrt{10}
6ని పొందడం కోసం \sqrt{6} మరియు \sqrt{6}ని గుణించండి.
6\sqrt{5}+\sqrt{60}
\sqrt{6}, \sqrt{10}ను గుణించడం కోసం, స్క్వేర్ రూట్లో సంఖ్యలను గుణించండి.
6\sqrt{5}+2\sqrt{15}
కారకం 60=2^{2}\times 15. ప్రాడక్ట్ \sqrt{2^{2}\times 15} యొక్క స్క్వేర్ రూట్ను స్క్వేర్ రూట్స్ \sqrt{2^{2}}\sqrt{15} యొక్క ప్రాడక్ట్ లాగా తిరిగి వ్రాయండి. 2^{2} వర్గమూలాన్ని తీసుకోండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}