మూల్యాంకనం చేయండి
-\sqrt{5}\approx -2.236067977
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{\sqrt{2}}{\sqrt{5}}\sqrt{50}-\sqrt{45}
భాగహారం \sqrt{\frac{2}{5}} యొక్క స్క్వేర్ రూట్ను స్క్వే రూట్స్ \frac{\sqrt{2}}{\sqrt{5}} యొక్క భాగహారం లాగా తిరిగి వ్రాయండి.
\frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\sqrt{50}-\sqrt{45}
లవం, హారాన్ని \sqrt{5}తో గుణించడం ద్వారా \frac{\sqrt{2}}{\sqrt{5}} యొక్క హారాన్ని రేషనలైజ్ చేయండి.
\frac{\sqrt{2}\sqrt{5}}{5}\sqrt{50}-\sqrt{45}
\sqrt{5} యొక్క స్క్వేర్ 5.
\frac{\sqrt{10}}{5}\sqrt{50}-\sqrt{45}
\sqrt{2}, \sqrt{5}ను గుణించడం కోసం, స్క్వేర్ రూట్లో సంఖ్యలను గుణించండి.
\frac{\sqrt{10}}{5}\times 5\sqrt{2}-\sqrt{45}
కారకం 50=5^{2}\times 2. ప్రాడక్ట్ \sqrt{5^{2}\times 2} యొక్క స్క్వేర్ రూట్ను స్క్వేర్ రూట్స్ \sqrt{5^{2}}\sqrt{2} యొక్క ప్రాడక్ట్ లాగా తిరిగి వ్రాయండి. 5^{2} వర్గమూలాన్ని తీసుకోండి.
\sqrt{10}\sqrt{2}-\sqrt{45}
5 మరియు 5ని పరిష్కరించండి.
\sqrt{2}\sqrt{5}\sqrt{2}-\sqrt{45}
కారకం 10=2\times 5. ప్రాడక్ట్ \sqrt{2\times 5} యొక్క స్క్వేర్ రూట్ను స్క్వేర్ రూట్స్ \sqrt{2}\sqrt{5} యొక్క ప్రాడక్ట్ లాగా తిరిగి వ్రాయండి.
2\sqrt{5}-\sqrt{45}
2ని పొందడం కోసం \sqrt{2} మరియు \sqrt{2}ని గుణించండి.
2\sqrt{5}-3\sqrt{5}
కారకం 45=3^{2}\times 5. ప్రాడక్ట్ \sqrt{3^{2}\times 5} యొక్క స్క్వేర్ రూట్ను స్క్వేర్ రూట్స్ \sqrt{3^{2}}\sqrt{5} యొక్క ప్రాడక్ట్ లాగా తిరిగి వ్రాయండి. 3^{2} వర్గమూలాన్ని తీసుకోండి.
-\sqrt{5}
-\sqrt{5}ని పొందడం కోసం 2\sqrt{5} మరియు -3\sqrt{5}ని జత చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}