మూల్యాంకనం చేయండి
\frac{15\pi }{68}\approx 0.692998379
విస్తరించండి
\frac{15 \pi}{68} = 0.6929983794683366
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{\pi \times 2}{1\times 2+1}\times \frac{\frac{3\times 2+1}{2}}{\frac{2\times 3+1}{3}}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
\frac{1\times 2+1}{2} యొక్క విలోమరాశులను \pi తో గుణించడం ద్వారా \frac{1\times 2+1}{2}తో \pi ని భాగించండి.
\frac{\pi \times 2}{2+1}\times \frac{\frac{3\times 2+1}{2}}{\frac{2\times 3+1}{3}}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
2ని పొందడం కోసం 1 మరియు 2ని గుణించండి.
\frac{\pi \times 2}{3}\times \frac{\frac{3\times 2+1}{2}}{\frac{2\times 3+1}{3}}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
3ని పొందడం కోసం 2 మరియు 1ని కూడండి.
\frac{\pi \times 2}{3}\times \frac{\left(3\times 2+1\right)\times 3}{2\left(2\times 3+1\right)}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
\frac{2\times 3+1}{3} యొక్క విలోమరాశులను \frac{3\times 2+1}{2}తో గుణించడం ద్వారా \frac{2\times 3+1}{3}తో \frac{3\times 2+1}{2}ని భాగించండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
లవము మరియు హారము రెండింటిలో 1+2\times 3ని పరిష్కరించండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{4+1}{4}}{2+\frac{3\times 3+2}{3}}
4ని పొందడం కోసం 1 మరియు 4ని గుణించండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{2+\frac{3\times 3+2}{3}}
5ని పొందడం కోసం 4 మరియు 1ని కూడండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{2+\frac{9+2}{3}}
9ని పొందడం కోసం 3 మరియు 3ని గుణించండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{2+\frac{11}{3}}
11ని పొందడం కోసం 9 మరియు 2ని కూడండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{\frac{6}{3}+\frac{11}{3}}
2ని భిన్నం \frac{6}{3} వలె మార్పిడి చేయండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{\frac{6+11}{3}}
\frac{6}{3} మరియు \frac{11}{3} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను కూడటం ద్వారా వాటిని కూడండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{\frac{17}{3}}
17ని పొందడం కోసం 6 మరియు 11ని కూడండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{5}{4}\times \frac{3}{17}
\frac{17}{3} యొక్క విలోమరాశులను \frac{5}{4}తో గుణించడం ద్వారా \frac{17}{3}తో \frac{5}{4}ని భాగించండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{5\times 3}{4\times 17}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{5}{4} సార్లు \frac{3}{17}ని గుణించండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{15}{68}
\frac{5\times 3}{4\times 17} భిన్నంలో గుణకారాలు చేయండి.
\frac{\pi \times 2}{3}\times \frac{3\times 15}{2\times 68}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{3}{2} సార్లు \frac{15}{68}ని గుణించండి.
\frac{\pi \times 2}{3}\times \frac{45}{136}
\frac{3\times 15}{2\times 68} భిన్నంలో గుణకారాలు చేయండి.
\frac{\pi \times 2\times 45}{3\times 136}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{\pi \times 2}{3} సార్లు \frac{45}{136}ని గుణించండి.
\frac{15\pi }{68}
లవము మరియు హారము రెండింటిలో 2\times 3ని పరిష్కరించండి.
\frac{\pi \times 2}{1\times 2+1}\times \frac{\frac{3\times 2+1}{2}}{\frac{2\times 3+1}{3}}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
\frac{1\times 2+1}{2} యొక్క విలోమరాశులను \pi తో గుణించడం ద్వారా \frac{1\times 2+1}{2}తో \pi ని భాగించండి.
\frac{\pi \times 2}{2+1}\times \frac{\frac{3\times 2+1}{2}}{\frac{2\times 3+1}{3}}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
2ని పొందడం కోసం 1 మరియు 2ని గుణించండి.
\frac{\pi \times 2}{3}\times \frac{\frac{3\times 2+1}{2}}{\frac{2\times 3+1}{3}}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
3ని పొందడం కోసం 2 మరియు 1ని కూడండి.
\frac{\pi \times 2}{3}\times \frac{\left(3\times 2+1\right)\times 3}{2\left(2\times 3+1\right)}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
\frac{2\times 3+1}{3} యొక్క విలోమరాశులను \frac{3\times 2+1}{2}తో గుణించడం ద్వారా \frac{2\times 3+1}{3}తో \frac{3\times 2+1}{2}ని భాగించండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{1\times 4+1}{4}}{2+\frac{3\times 3+2}{3}}
లవము మరియు హారము రెండింటిలో 1+2\times 3ని పరిష్కరించండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{4+1}{4}}{2+\frac{3\times 3+2}{3}}
4ని పొందడం కోసం 1 మరియు 4ని గుణించండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{2+\frac{3\times 3+2}{3}}
5ని పొందడం కోసం 4 మరియు 1ని కూడండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{2+\frac{9+2}{3}}
9ని పొందడం కోసం 3 మరియు 3ని గుణించండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{2+\frac{11}{3}}
11ని పొందడం కోసం 9 మరియు 2ని కూడండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{\frac{6}{3}+\frac{11}{3}}
2ని భిన్నం \frac{6}{3} వలె మార్పిడి చేయండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{\frac{6+11}{3}}
\frac{6}{3} మరియు \frac{11}{3} ఒకే హారమును కలిగి ఉన్నాయి కనుక, వాటి లవములను కూడటం ద్వారా వాటిని కూడండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{\frac{5}{4}}{\frac{17}{3}}
17ని పొందడం కోసం 6 మరియు 11ని కూడండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{5}{4}\times \frac{3}{17}
\frac{17}{3} యొక్క విలోమరాశులను \frac{5}{4}తో గుణించడం ద్వారా \frac{17}{3}తో \frac{5}{4}ని భాగించండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{5\times 3}{4\times 17}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{5}{4} సార్లు \frac{3}{17}ని గుణించండి.
\frac{\pi \times 2}{3}\times \frac{3}{2}\times \frac{15}{68}
\frac{5\times 3}{4\times 17} భిన్నంలో గుణకారాలు చేయండి.
\frac{\pi \times 2}{3}\times \frac{3\times 15}{2\times 68}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{3}{2} సార్లు \frac{15}{68}ని గుణించండి.
\frac{\pi \times 2}{3}\times \frac{45}{136}
\frac{3\times 15}{2\times 68} భిన్నంలో గుణకారాలు చేయండి.
\frac{\pi \times 2\times 45}{3\times 136}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{\pi \times 2}{3} సార్లు \frac{45}{136}ని గుణించండి.
\frac{15\pi }{68}
లవము మరియు హారము రెండింటిలో 2\times 3ని పరిష్కరించండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}