μ_Xని పరిష్కరించండి
\mu _{X}=0
μ_Xని ఉపయోగించండి
\mu _{X}≔0
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\mu _{X}=\frac{3\times 2}{5}+\frac{2}{5}\left(-3\right)
\frac{3}{5}\times 2ని ఏక భిన్నం వలె వ్యక్తీకరించండి.
\mu _{X}=\frac{6}{5}+\frac{2}{5}\left(-3\right)
6ని పొందడం కోసం 3 మరియు 2ని గుణించండి.
\mu _{X}=\frac{6}{5}+\frac{2\left(-3\right)}{5}
\frac{2}{5}\left(-3\right)ని ఏక భిన్నం వలె వ్యక్తీకరించండి.
\mu _{X}=\frac{6}{5}+\frac{-6}{5}
-6ని పొందడం కోసం 2 మరియు -3ని గుణించండి.
\mu _{X}=\frac{6}{5}-\frac{6}{5}
రుణాత్మక సంకేతాన్ని తీసివేయడం ద్వారా \frac{-6}{5} భిన్నమును -\frac{6}{5} తిరిగి వ్రాయవచ్చు.
\mu _{X}=0
0ని పొందడం కోసం \frac{6}{5}ని \frac{6}{5} నుండి వ్యవకలనం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}