మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x+y=39,4x+2y=126
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x+y=39
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=-y+39
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
4\left(-y+39\right)+2y=126
మరొక సమీకరణములో xను -y+39 స్థానంలో ప్రతిక్షేపించండి, 4x+2y=126.
-4y+156+2y=126
4 సార్లు -y+39ని గుణించండి.
-2y+156=126
2yకు -4yని కూడండి.
-2y=-30
సమీకరణము యొక్క రెండు భాగాల నుండి 156ని వ్యవకలనం చేయండి.
y=15
రెండు వైపులా -2తో భాగించండి.
x=-15+39
x=-y+39లో yను 15 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=24
-15కు 39ని కూడండి.
x=24,y=15
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x+y=39,4x+2y=126
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}39\\126\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
\left(\begin{matrix}1&1\\4&2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{1}{2-4}\\-\frac{4}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}39\\126\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}39\\126\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-39+\frac{1}{2}\times 126\\2\times 39-\frac{1}{2}\times 126\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\15\end{matrix}\right)
అంకగణితము చేయండి.
x=24,y=15
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x+y=39,4x+2y=126
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
4x+4y=4\times 39,4x+2y=126
x మరియు 4xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 4తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
4x+4y=156,4x+2y=126
సరళీకృతం చేయండి.
4x-4x+4y-2y=156-126
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 4x+2y=126ని 4x+4y=156 నుండి వ్యవకలనం చేయండి.
4y-2y=156-126
-4xకు 4xని కూడండి. 4x మరియు -4x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
2y=156-126
-2yకు 4yని కూడండి.
2y=30
-126కు 156ని కూడండి.
y=15
రెండు వైపులా 2తో భాగించండి.
4x+2\times 15=126
4x+2y=126లో yను 15 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
4x+30=126
2 సార్లు 15ని గుణించండి.
4x=96
సమీకరణము యొక్క రెండు భాగాల నుండి 30ని వ్యవకలనం చేయండి.
x=24
రెండు వైపులా 4తో భాగించండి.
x=24,y=15
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.