మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x-10y=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 10yని వ్యవకలనం చేయండి.
x-2y=6,x-10y=-2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x-2y=6
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=2y+6
సమీకరణం యొక్క రెండు వైపులా 2yని కూడండి.
2y+6-10y=-2
మరొక సమీకరణములో xను 6+2y స్థానంలో ప్రతిక్షేపించండి, x-10y=-2.
-8y+6=-2
-10yకు 2yని కూడండి.
-8y=-8
సమీకరణము యొక్క రెండు భాగాల నుండి 6ని వ్యవకలనం చేయండి.
y=1
రెండు వైపులా -8తో భాగించండి.
x=2+6
x=2y+6లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=8
2కు 6ని కూడండి.
x=8,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x-10y=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 10yని వ్యవకలనం చేయండి.
x-2y=6,x-10y=-2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-2\\1&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-2\\1&-10\end{matrix}\right))\left(\begin{matrix}1&-2\\1&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-10\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
\left(\begin{matrix}1&-2\\1&-10\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-10\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-10\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{-10-\left(-2\right)}&-\frac{-2}{-10-\left(-2\right)}\\-\frac{1}{-10-\left(-2\right)}&\frac{1}{-10-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}6\\-2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}&-\frac{1}{4}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}6\\-2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}\times 6-\frac{1}{4}\left(-2\right)\\\frac{1}{8}\times 6-\frac{1}{8}\left(-2\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\1\end{matrix}\right)
అంకగణితము చేయండి.
x=8,y=1
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x-10y=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 10yని వ్యవకలనం చేయండి.
x-2y=6,x-10y=-2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
x-x-2y+10y=6+2
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా x-10y=-2ని x-2y=6 నుండి వ్యవకలనం చేయండి.
-2y+10y=6+2
-xకు xని కూడండి. x మరియు -x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
8y=6+2
10yకు -2yని కూడండి.
8y=8
2కు 6ని కూడండి.
y=1
రెండు వైపులా 8తో భాగించండి.
x-10=-2
x-10y=-2లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=8
సమీకరణం యొక్క రెండు వైపులా 10ని కూడండి.
x=8,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.