మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x-2y=10,x+y=5
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x-2y=10
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=2y+10
సమీకరణం యొక్క రెండు వైపులా 2yని కూడండి.
x=\frac{1}{3}\left(2y+10\right)
రెండు వైపులా 3తో భాగించండి.
x=\frac{2}{3}y+\frac{10}{3}
\frac{1}{3} సార్లు 10+2yని గుణించండి.
\frac{2}{3}y+\frac{10}{3}+y=5
మరొక సమీకరణములో xను \frac{10+2y}{3} స్థానంలో ప్రతిక్షేపించండి, x+y=5.
\frac{5}{3}y+\frac{10}{3}=5
yకు \frac{2y}{3}ని కూడండి.
\frac{5}{3}y=\frac{5}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{10}{3}ని వ్యవకలనం చేయండి.
y=1
సమీకరణము యొక్క రెండు వైపులా \frac{5}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{2+10}{3}
x=\frac{2}{3}y+\frac{10}{3}లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=4
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{2}{3}కు \frac{10}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=4,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x-2y=10,x+y=5
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
\left(\begin{matrix}3&-2\\1&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\right)}&-\frac{-2}{3-\left(-2\right)}\\-\frac{1}{3-\left(-2\right)}&\frac{3}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\-\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 10+\frac{2}{5}\times 5\\-\frac{1}{5}\times 10+\frac{3}{5}\times 5\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
అంకగణితము చేయండి.
x=4,y=1
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x-2y=10,x+y=5
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3x-2y=10,3x+3y=3\times 5
3x మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
3x-2y=10,3x+3y=15
సరళీకృతం చేయండి.
3x-3x-2y-3y=10-15
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 3x+3y=15ని 3x-2y=10 నుండి వ్యవకలనం చేయండి.
-2y-3y=10-15
-3xకు 3xని కూడండి. 3x మరియు -3x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-5y=10-15
-3yకు -2yని కూడండి.
-5y=-5
-15కు 10ని కూడండి.
y=1
రెండు వైపులా -5తో భాగించండి.
x+1=5
x+y=5లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=4
సమీకరణము యొక్క రెండు భాగాల నుండి 1ని వ్యవకలనం చేయండి.
x=4,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.