మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

6x+8y=k,x+y=1
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
6x+8y=k
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
6x=-8y+k
సమీకరణము యొక్క రెండు భాగాల నుండి 8yని వ్యవకలనం చేయండి.
x=\frac{1}{6}\left(-8y+k\right)
రెండు వైపులా 6తో భాగించండి.
x=-\frac{4}{3}y+\frac{k}{6}
\frac{1}{6} సార్లు -8y+kని గుణించండి.
-\frac{4}{3}y+\frac{k}{6}+y=1
మరొక సమీకరణములో xను -\frac{4y}{3}+\frac{k}{6} స్థానంలో ప్రతిక్షేపించండి, x+y=1.
-\frac{1}{3}y+\frac{k}{6}=1
yకు -\frac{4y}{3}ని కూడండి.
-\frac{1}{3}y=-\frac{k}{6}+1
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{k}{6}ని వ్యవకలనం చేయండి.
y=\frac{k}{2}-3
రెండు వైపులా -3తో గుణించండి.
x=-\frac{4}{3}\left(\frac{k}{2}-3\right)+\frac{k}{6}
x=-\frac{4}{3}y+\frac{k}{6}లో yను -3+\frac{k}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{2k}{3}+4+\frac{k}{6}
-\frac{4}{3} సార్లు -3+\frac{k}{2}ని గుణించండి.
x=-\frac{k}{2}+4
4-\frac{2k}{3}కు \frac{k}{6}ని కూడండి.
x=-\frac{k}{2}+4,y=\frac{k}{2}-3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
6x+8y=k,x+y=1
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}6&8\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}k\\1\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}6&8\\1&1\end{matrix}\right))\left(\begin{matrix}6&8\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&8\\1&1\end{matrix}\right))\left(\begin{matrix}k\\1\end{matrix}\right)
\left(\begin{matrix}6&8\\1&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&8\\1&1\end{matrix}\right))\left(\begin{matrix}k\\1\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&8\\1&1\end{matrix}\right))\left(\begin{matrix}k\\1\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-8}&-\frac{8}{6-8}\\-\frac{1}{6-8}&\frac{6}{6-8}\end{matrix}\right)\left(\begin{matrix}k\\1\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&4\\\frac{1}{2}&-3\end{matrix}\right)\left(\begin{matrix}k\\1\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}k+4\\\frac{1}{2}k-3\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{k}{2}+4\\\frac{k}{2}-3\end{matrix}\right)
అంకగణితము చేయండి.
x=-\frac{k}{2}+4,y=\frac{k}{2}-3
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
6x+8y=k,x+y=1
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
6x+8y=k,6x+6y=6
6x మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 6తో గుణించండి.
6x-6x+8y-6y=k-6
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 6x+6y=6ని 6x+8y=k నుండి వ్యవకలనం చేయండి.
8y-6y=k-6
-6xకు 6xని కూడండి. 6x మరియు -6x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
2y=k-6
-6yకు 8yని కూడండి.
y=\frac{k}{2}-3
రెండు వైపులా 2తో భాగించండి.
x+\frac{k}{2}-3=1
x+y=1లో yను \frac{k}{2}-3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{k}{2}+4
సమీకరణము యొక్క రెండు భాగాల నుండి -3+\frac{k}{2}ని వ్యవకలనం చేయండి.
x=-\frac{k}{2}+4,y=\frac{k}{2}-3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.