x, yని పరిష్కరించండి
x=5
y=-2
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
-7x+2y=-39,9x-5y=55
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-7x+2y=-39
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-7x=-2y-39
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
x=-\frac{1}{7}\left(-2y-39\right)
రెండు వైపులా -7తో భాగించండి.
x=\frac{2}{7}y+\frac{39}{7}
-\frac{1}{7} సార్లు -2y-39ని గుణించండి.
9\left(\frac{2}{7}y+\frac{39}{7}\right)-5y=55
మరొక సమీకరణములో xను \frac{2y+39}{7} స్థానంలో ప్రతిక్షేపించండి, 9x-5y=55.
\frac{18}{7}y+\frac{351}{7}-5y=55
9 సార్లు \frac{2y+39}{7}ని గుణించండి.
-\frac{17}{7}y+\frac{351}{7}=55
-5yకు \frac{18y}{7}ని కూడండి.
-\frac{17}{7}y=\frac{34}{7}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{351}{7}ని వ్యవకలనం చేయండి.
y=-2
సమీకరణము యొక్క రెండు వైపులా -\frac{17}{7}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{2}{7}\left(-2\right)+\frac{39}{7}
x=\frac{2}{7}y+\frac{39}{7}లో yను -2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-4+39}{7}
\frac{2}{7} సార్లు -2ని గుణించండి.
x=5
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{4}{7}కు \frac{39}{7}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=5,y=-2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
-7x+2y=-39,9x-5y=55
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-7&2\\9&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-39\\55\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-7&2\\9&-5\end{matrix}\right))\left(\begin{matrix}-7&2\\9&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\9&-5\end{matrix}\right))\left(\begin{matrix}-39\\55\end{matrix}\right)
\left(\begin{matrix}-7&2\\9&-5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\9&-5\end{matrix}\right))\left(\begin{matrix}-39\\55\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\9&-5\end{matrix}\right))\left(\begin{matrix}-39\\55\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-7\left(-5\right)-2\times 9}&-\frac{2}{-7\left(-5\right)-2\times 9}\\-\frac{9}{-7\left(-5\right)-2\times 9}&-\frac{7}{-7\left(-5\right)-2\times 9}\end{matrix}\right)\left(\begin{matrix}-39\\55\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{17}&-\frac{2}{17}\\-\frac{9}{17}&-\frac{7}{17}\end{matrix}\right)\left(\begin{matrix}-39\\55\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{17}\left(-39\right)-\frac{2}{17}\times 55\\-\frac{9}{17}\left(-39\right)-\frac{7}{17}\times 55\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
అంకగణితము చేయండి.
x=5,y=-2
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
-7x+2y=-39,9x-5y=55
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
9\left(-7\right)x+9\times 2y=9\left(-39\right),-7\times 9x-7\left(-5\right)y=-7\times 55
-7x మరియు 9xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 9తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -7తో గుణించండి.
-63x+18y=-351,-63x+35y=-385
సరళీకృతం చేయండి.
-63x+63x+18y-35y=-351+385
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -63x+35y=-385ని -63x+18y=-351 నుండి వ్యవకలనం చేయండి.
18y-35y=-351+385
63xకు -63xని కూడండి. -63x మరియు 63x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-17y=-351+385
-35yకు 18yని కూడండి.
-17y=34
385కు -351ని కూడండి.
y=-2
రెండు వైపులా -17తో భాగించండి.
9x-5\left(-2\right)=55
9x-5y=55లో yను -2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
9x+10=55
-5 సార్లు -2ని గుణించండి.
9x=45
సమీకరణము యొక్క రెండు భాగాల నుండి 10ని వ్యవకలనం చేయండి.
x=5
రెండు వైపులా 9తో భాగించండి.
x=5,y=-2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}