x, yని పరిష్కరించండి
x=7
y=13
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=8,\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=9
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=8
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}\left(y-1\right)=8
\frac{1}{2} సార్లు x+1ని గుణించండి.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}y-\frac{1}{3}=8
\frac{1}{3} సార్లు y-1ని గుణించండి.
\frac{1}{2}x+\frac{1}{3}y+\frac{1}{6}=8
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{1}{3}కు \frac{1}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\frac{1}{2}x+\frac{1}{3}y=\frac{47}{6}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{1}{6}ని వ్యవకలనం చేయండి.
\frac{1}{2}x=-\frac{1}{3}y+\frac{47}{6}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{y}{3}ని వ్యవకలనం చేయండి.
x=2\left(-\frac{1}{3}y+\frac{47}{6}\right)
రెండు వైపులా 2తో గుణించండి.
x=-\frac{2}{3}y+\frac{47}{3}
2 సార్లు -\frac{y}{3}+\frac{47}{6}ని గుణించండి.
\frac{1}{3}\left(-\frac{2}{3}y+\frac{47}{3}-1\right)+\frac{1}{2}\left(y+1\right)=9
మరొక సమీకరణములో xను \frac{-2y+47}{3} స్థానంలో ప్రతిక్షేపించండి, \frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=9.
\frac{1}{3}\left(-\frac{2}{3}y+\frac{44}{3}\right)+\frac{1}{2}\left(y+1\right)=9
-1కు \frac{47}{3}ని కూడండి.
-\frac{2}{9}y+\frac{44}{9}+\frac{1}{2}\left(y+1\right)=9
\frac{1}{3} సార్లు \frac{-2y+44}{3}ని గుణించండి.
-\frac{2}{9}y+\frac{44}{9}+\frac{1}{2}y+\frac{1}{2}=9
\frac{1}{2} సార్లు y+1ని గుణించండి.
\frac{5}{18}y+\frac{44}{9}+\frac{1}{2}=9
\frac{y}{2}కు -\frac{2y}{9}ని కూడండి.
\frac{5}{18}y+\frac{97}{18}=9
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{1}{2}కు \frac{44}{9}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\frac{5}{18}y=\frac{65}{18}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{97}{18}ని వ్యవకలనం చేయండి.
y=13
సమీకరణము యొక్క రెండు వైపులా \frac{5}{18}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{2}{3}\times 13+\frac{47}{3}
x=-\frac{2}{3}y+\frac{47}{3}లో yను 13 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-26+47}{3}
-\frac{2}{3} సార్లు 13ని గుణించండి.
x=7
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{26}{3}కు \frac{47}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=7,y=13
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=8,\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=9
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=8
ప్రామాణిక ఆకృతిలో ఉంచడం కోసం మొదటి సమీకరణమును సరళీకృతం చేయండి.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}\left(y-1\right)=8
\frac{1}{2} సార్లు x+1ని గుణించండి.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}y-\frac{1}{3}=8
\frac{1}{3} సార్లు y-1ని గుణించండి.
\frac{1}{2}x+\frac{1}{3}y+\frac{1}{6}=8
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{1}{3}కు \frac{1}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\frac{1}{2}x+\frac{1}{3}y=\frac{47}{6}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{1}{6}ని వ్యవకలనం చేయండి.
\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=9
ప్రామాణిక ఆకృతిలో ఉంచడం కోసం రెండవ సమీకరణమును సరళీకృతం చేయండి.
\frac{1}{3}x-\frac{1}{3}+\frac{1}{2}\left(y+1\right)=9
\frac{1}{3} సార్లు x-1ని గుణించండి.
\frac{1}{3}x-\frac{1}{3}+\frac{1}{2}y+\frac{1}{2}=9
\frac{1}{2} సార్లు y+1ని గుణించండి.
\frac{1}{3}x+\frac{1}{2}y+\frac{1}{6}=9
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{1}{2}కు -\frac{1}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\frac{1}{3}x+\frac{1}{2}y=\frac{53}{6}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{1}{6}ని వ్యవకలనం చేయండి.
\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}&-\frac{\frac{1}{3}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}\\-\frac{\frac{1}{3}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}&\frac{\frac{1}{2}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}\end{matrix}\right)\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{5}&-\frac{12}{5}\\-\frac{12}{5}&\frac{18}{5}\end{matrix}\right)\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{5}\times \frac{47}{6}-\frac{12}{5}\times \frac{53}{6}\\-\frac{12}{5}\times \frac{47}{6}+\frac{18}{5}\times \frac{53}{6}\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\13\end{matrix}\right)
అంకగణితము చేయండి.
x=7,y=13
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}