మెయిన్ కంటెంట్ కు వెళ్లండి
y, xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

y-7x=3
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 7xని వ్యవకలనం చేయండి.
y-x=9
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
y-7x=3,y-x=9
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
y-7x=3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న yని వేరు చేయడం ద్వారా yని పరిష్కరించండి.
y=7x+3
సమీకరణం యొక్క రెండు వైపులా 7xని కూడండి.
7x+3-x=9
మరొక సమీకరణములో yను 7x+3 స్థానంలో ప్రతిక్షేపించండి, y-x=9.
6x+3=9
-xకు 7xని కూడండి.
6x=6
సమీకరణము యొక్క రెండు భాగాల నుండి 3ని వ్యవకలనం చేయండి.
x=1
రెండు వైపులా 6తో భాగించండి.
y=7+3
y=7x+3లో xను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=10
7కు 3ని కూడండి.
y=10,x=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y-7x=3
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 7xని వ్యవకలనం చేయండి.
y-x=9
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
y-7x=3,y-x=9
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-7\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\9\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-7\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-7\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\9\end{matrix}\right)
\left(\begin{matrix}1&-7\\1&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\9\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\9\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-7\right)}&-\frac{-7}{-1-\left(-7\right)}\\-\frac{1}{-1-\left(-7\right)}&\frac{1}{-1-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}3\\9\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{7}{6}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}3\\9\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 3+\frac{7}{6}\times 9\\-\frac{1}{6}\times 3+\frac{1}{6}\times 9\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}10\\1\end{matrix}\right)
అంకగణితము చేయండి.
y=10,x=1
y మరియు x మాత్రిక మూలకాలను విస్తరించండి.
y-7x=3
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 7xని వ్యవకలనం చేయండి.
y-x=9
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
y-7x=3,y-x=9
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
y-y-7x+x=3-9
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా y-x=9ని y-7x=3 నుండి వ్యవకలనం చేయండి.
-7x+x=3-9
-yకు yని కూడండి. y మరియు -y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-6x=3-9
xకు -7xని కూడండి.
-6x=-6
-9కు 3ని కూడండి.
x=1
రెండు వైపులా -6తో భాగించండి.
y-1=9
y-x=9లో xను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=10
సమీకరణం యొక్క రెండు వైపులా 1ని కూడండి.
y=10,x=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.