మెయిన్ కంటెంట్ కు వెళ్లండి
y, xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

y-4x=2
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 4xని వ్యవకలనం చేయండి.
y+2x=-4
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా 2xని జోడించండి.
y-4x=2,y+2x=-4
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
y-4x=2
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న yని వేరు చేయడం ద్వారా yని పరిష్కరించండి.
y=4x+2
సమీకరణం యొక్క రెండు వైపులా 4xని కూడండి.
4x+2+2x=-4
మరొక సమీకరణములో yను 4x+2 స్థానంలో ప్రతిక్షేపించండి, y+2x=-4.
6x+2=-4
2xకు 4xని కూడండి.
6x=-6
సమీకరణము యొక్క రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి.
x=-1
రెండు వైపులా 6తో భాగించండి.
y=4\left(-1\right)+2
y=4x+2లో xను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=-4+2
4 సార్లు -1ని గుణించండి.
y=-2
-4కు 2ని కూడండి.
y=-2,x=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y-4x=2
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 4xని వ్యవకలనం చేయండి.
y+2x=-4
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా 2xని జోడించండి.
y-4x=2,y+2x=-4
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-4\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-4\\1&2\end{matrix}\right))\left(\begin{matrix}1&-4\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
\left(\begin{matrix}1&-4\\1&2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-4\right)}&-\frac{-4}{2-\left(-4\right)}\\-\frac{1}{2-\left(-4\right)}&\frac{1}{2-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 2+\frac{2}{3}\left(-4\right)\\-\frac{1}{6}\times 2+\frac{1}{6}\left(-4\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
అంకగణితము చేయండి.
y=-2,x=-1
y మరియు x మాత్రిక మూలకాలను విస్తరించండి.
y-4x=2
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 4xని వ్యవకలనం చేయండి.
y+2x=-4
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా 2xని జోడించండి.
y-4x=2,y+2x=-4
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
y-y-4x-2x=2+4
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా y+2x=-4ని y-4x=2 నుండి వ్యవకలనం చేయండి.
-4x-2x=2+4
-yకు yని కూడండి. y మరియు -y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-6x=2+4
-2xకు -4xని కూడండి.
-6x=6
4కు 2ని కూడండి.
x=-1
రెండు వైపులా -6తో భాగించండి.
y+2\left(-1\right)=-4
y+2x=-4లో xను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y-2=-4
2 సార్లు -1ని గుణించండి.
y=-2
సమీకరణం యొక్క రెండు వైపులా 2ని కూడండి.
y=-2,x=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.