మెయిన్ కంటెంట్ కు వెళ్లండి
y, xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

y-2x=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 2xని వ్యవకలనం చేయండి.
y-\frac{x}{3}=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{x}{3}ని వ్యవకలనం చేయండి.
3y-x=0
సమీకరణము యొక్క రెండు వైపులా 3తో గుణించండి.
y-2x=0,3y-x=0
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
y-2x=0
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న yని వేరు చేయడం ద్వారా yని పరిష్కరించండి.
y=2x
సమీకరణం యొక్క రెండు వైపులా 2xని కూడండి.
3\times 2x-x=0
మరొక సమీకరణములో yను 2x స్థానంలో ప్రతిక్షేపించండి, 3y-x=0.
6x-x=0
3 సార్లు 2xని గుణించండి.
5x=0
-xకు 6xని కూడండి.
x=0
రెండు వైపులా 5తో భాగించండి.
y=0
y=2xలో xను 0 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=0,x=0
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y-2x=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 2xని వ్యవకలనం చేయండి.
y-\frac{x}{3}=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{x}{3}ని వ్యవకలనం చేయండి.
3y-x=0
సమీకరణము యొక్క రెండు వైపులా 3తో గుణించండి.
y-2x=0,3y-x=0
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\times 3\right)}&-\frac{-2}{-1-\left(-2\times 3\right)}\\-\frac{3}{-1-\left(-2\times 3\right)}&\frac{1}{-1-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\-\frac{3}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
మాత్రికలను గుణించండి.
y=0,x=0
y మరియు x మాత్రిక మూలకాలను విస్తరించండి.
y-2x=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 2xని వ్యవకలనం చేయండి.
y-\frac{x}{3}=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{x}{3}ని వ్యవకలనం చేయండి.
3y-x=0
సమీకరణము యొక్క రెండు వైపులా 3తో గుణించండి.
y-2x=0,3y-x=0
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3y+3\left(-2\right)x=0,3y-x=0
y మరియు 3yని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
3y-6x=0,3y-x=0
సరళీకృతం చేయండి.
3y-3y-6x+x=0
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 3y-x=0ని 3y-6x=0 నుండి వ్యవకలనం చేయండి.
-6x+x=0
-3yకు 3yని కూడండి. 3y మరియు -3y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-5x=0
xకు -6xని కూడండి.
x=0
రెండు వైపులా -5తో భాగించండి.
3y=0
3y-x=0లో xను 0 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=0
రెండు వైపులా 3తో భాగించండి.
y=0,x=0
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.