మెయిన్ కంటెంట్ కు వెళ్లండి
y, xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

y+2x=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా 2xని జోడించండి.
y+2x=0,6y+4x=24
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
y+2x=0
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న yని వేరు చేయడం ద్వారా yని పరిష్కరించండి.
y=-2x
సమీకరణము యొక్క రెండు భాగాల నుండి 2xని వ్యవకలనం చేయండి.
6\left(-2\right)x+4x=24
మరొక సమీకరణములో yను -2x స్థానంలో ప్రతిక్షేపించండి, 6y+4x=24.
-12x+4x=24
6 సార్లు -2xని గుణించండి.
-8x=24
4xకు -12xని కూడండి.
x=-3
రెండు వైపులా -8తో భాగించండి.
y=-2\left(-3\right)
y=-2xలో xను -3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=6
-2 సార్లు -3ని గుణించండి.
y=6,x=-3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y+2x=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా 2xని జోడించండి.
y+2x=0,6y+4x=24
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&2\\6&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\24\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&2\\6&4\end{matrix}\right))\left(\begin{matrix}1&2\\6&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\6&4\end{matrix}\right))\left(\begin{matrix}0\\24\end{matrix}\right)
\left(\begin{matrix}1&2\\6&4\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\6&4\end{matrix}\right))\left(\begin{matrix}0\\24\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\6&4\end{matrix}\right))\left(\begin{matrix}0\\24\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2\times 6}&-\frac{2}{4-2\times 6}\\-\frac{6}{4-2\times 6}&\frac{1}{4-2\times 6}\end{matrix}\right)\left(\begin{matrix}0\\24\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{4}\\\frac{3}{4}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}0\\24\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 24\\-\frac{1}{8}\times 24\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\-3\end{matrix}\right)
అంకగణితము చేయండి.
y=6,x=-3
y మరియు x మాత్రిక మూలకాలను విస్తరించండి.
y+2x=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా 2xని జోడించండి.
y+2x=0,6y+4x=24
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
6y+6\times 2x=0,6y+4x=24
y మరియు 6yని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 6తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
6y+12x=0,6y+4x=24
సరళీకృతం చేయండి.
6y-6y+12x-4x=-24
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 6y+4x=24ని 6y+12x=0 నుండి వ్యవకలనం చేయండి.
12x-4x=-24
-6yకు 6yని కూడండి. 6y మరియు -6y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
8x=-24
-4xకు 12xని కూడండి.
x=-3
రెండు వైపులా 8తో భాగించండి.
6y+4\left(-3\right)=24
6y+4x=24లో xను -3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
6y-12=24
4 సార్లు -3ని గుణించండి.
6y=36
సమీకరణం యొక్క రెండు వైపులా 12ని కూడండి.
y=6
రెండు వైపులా 6తో భాగించండి.
y=6,x=-3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.