మెయిన్ కంటెంట్ కు వెళ్లండి
y, xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

y-\frac{1}{3}x=1
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{1}{3}xని వ్యవకలనం చేయండి.
y-\frac{4}{3}x=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{4}{3}xని వ్యవకలనం చేయండి.
y-\frac{1}{3}x=1,y-\frac{4}{3}x=-2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
y-\frac{1}{3}x=1
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న yని వేరు చేయడం ద్వారా yని పరిష్కరించండి.
y=\frac{1}{3}x+1
సమీకరణం యొక్క రెండు వైపులా \frac{x}{3}ని కూడండి.
\frac{1}{3}x+1-\frac{4}{3}x=-2
మరొక సమీకరణములో yను \frac{x}{3}+1 స్థానంలో ప్రతిక్షేపించండి, y-\frac{4}{3}x=-2.
-x+1=-2
-\frac{4x}{3}కు \frac{x}{3}ని కూడండి.
-x=-3
సమీకరణము యొక్క రెండు భాగాల నుండి 1ని వ్యవకలనం చేయండి.
x=3
రెండు వైపులా -1తో భాగించండి.
y=\frac{1}{3}\times 3+1
y=\frac{1}{3}x+1లో xను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=1+1
\frac{1}{3} సార్లు 3ని గుణించండి.
y=2
1కు 1ని కూడండి.
y=2,x=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y-\frac{1}{3}x=1
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{1}{3}xని వ్యవకలనం చేయండి.
y-\frac{4}{3}x=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{4}{3}xని వ్యవకలనం చేయండి.
y-\frac{1}{3}x=1,y-\frac{4}{3}x=-2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}1\\-2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{4}{3}}{-\frac{4}{3}-\left(-\frac{1}{3}\right)}&-\frac{-\frac{1}{3}}{-\frac{4}{3}-\left(-\frac{1}{3}\right)}\\-\frac{1}{-\frac{4}{3}-\left(-\frac{1}{3}\right)}&\frac{1}{-\frac{4}{3}-\left(-\frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}&-\frac{1}{3}\\1&-1\end{matrix}\right)\left(\begin{matrix}1\\-2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}-\frac{1}{3}\left(-2\right)\\1-\left(-2\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
అంకగణితము చేయండి.
y=2,x=3
y మరియు x మాత్రిక మూలకాలను విస్తరించండి.
y-\frac{1}{3}x=1
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{1}{3}xని వ్యవకలనం చేయండి.
y-\frac{4}{3}x=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{4}{3}xని వ్యవకలనం చేయండి.
y-\frac{1}{3}x=1,y-\frac{4}{3}x=-2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
y-y-\frac{1}{3}x+\frac{4}{3}x=1+2
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా y-\frac{4}{3}x=-2ని y-\frac{1}{3}x=1 నుండి వ్యవకలనం చేయండి.
-\frac{1}{3}x+\frac{4}{3}x=1+2
-yకు yని కూడండి. y మరియు -y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
x=1+2
\frac{4x}{3}కు -\frac{x}{3}ని కూడండి.
x=3
2కు 1ని కూడండి.
y-\frac{4}{3}\times 3=-2
y-\frac{4}{3}x=-2లో xను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y-4=-2
-\frac{4}{3} సార్లు 3ని గుణించండి.
y=2
సమీకరణం యొక్క రెండు వైపులా 4ని కూడండి.
y=2,x=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.