మెయిన్ కంటెంట్ కు వెళ్లండి
y, xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

y-\frac{1}{2}x=-4
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{1}{2}xని వ్యవకలనం చేయండి.
y+\frac{1}{4}x=-1
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా \frac{1}{4}xని జోడించండి.
y-\frac{1}{2}x=-4,y+\frac{1}{4}x=-1
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
y-\frac{1}{2}x=-4
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న yని వేరు చేయడం ద్వారా yని పరిష్కరించండి.
y=\frac{1}{2}x-4
సమీకరణం యొక్క రెండు వైపులా \frac{x}{2}ని కూడండి.
\frac{1}{2}x-4+\frac{1}{4}x=-1
మరొక సమీకరణములో yను \frac{x}{2}-4 స్థానంలో ప్రతిక్షేపించండి, y+\frac{1}{4}x=-1.
\frac{3}{4}x-4=-1
\frac{x}{4}కు \frac{x}{2}ని కూడండి.
\frac{3}{4}x=3
సమీకరణం యొక్క రెండు వైపులా 4ని కూడండి.
x=4
సమీకరణము యొక్క రెండు వైపులా \frac{3}{4}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
y=\frac{1}{2}\times 4-4
y=\frac{1}{2}x-4లో xను 4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=2-4
\frac{1}{2} సార్లు 4ని గుణించండి.
y=-2
2కు -4ని కూడండి.
y=-2,x=4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y-\frac{1}{2}x=-4
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{1}{2}xని వ్యవకలనం చేయండి.
y+\frac{1}{4}x=-1
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా \frac{1}{4}xని జోడించండి.
y-\frac{1}{2}x=-4,y+\frac{1}{4}x=-1
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-\frac{1}{2}\\1&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\-1\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{2}\\1&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}-4\\-1\end{matrix}\right)
\left(\begin{matrix}1&-\frac{1}{2}\\1&\frac{1}{4}\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}-4\\-1\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}-4\\-1\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{4}}{\frac{1}{4}-\left(-\frac{1}{2}\right)}&-\frac{-\frac{1}{2}}{\frac{1}{4}-\left(-\frac{1}{2}\right)}\\-\frac{1}{\frac{1}{4}-\left(-\frac{1}{2}\right)}&\frac{1}{\frac{1}{4}-\left(-\frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-1\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\-\frac{4}{3}&\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}-4\\-1\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-4\right)+\frac{2}{3}\left(-1\right)\\-\frac{4}{3}\left(-4\right)+\frac{4}{3}\left(-1\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\4\end{matrix}\right)
అంకగణితము చేయండి.
y=-2,x=4
y మరియు x మాత్రిక మూలకాలను విస్తరించండి.
y-\frac{1}{2}x=-4
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{1}{2}xని వ్యవకలనం చేయండి.
y+\frac{1}{4}x=-1
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా \frac{1}{4}xని జోడించండి.
y-\frac{1}{2}x=-4,y+\frac{1}{4}x=-1
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
y-y-\frac{1}{2}x-\frac{1}{4}x=-4+1
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా y+\frac{1}{4}x=-1ని y-\frac{1}{2}x=-4 నుండి వ్యవకలనం చేయండి.
-\frac{1}{2}x-\frac{1}{4}x=-4+1
-yకు yని కూడండి. y మరియు -y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-\frac{3}{4}x=-4+1
-\frac{x}{4}కు -\frac{x}{2}ని కూడండి.
-\frac{3}{4}x=-3
1కు -4ని కూడండి.
x=4
సమీకరణము యొక్క రెండు వైపులా -\frac{3}{4}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
y+\frac{1}{4}\times 4=-1
y+\frac{1}{4}x=-1లో xను 4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y+1=-1
\frac{1}{4} సార్లు 4ని గుణించండి.
y=-2
సమీకరణము యొక్క రెండు భాగాల నుండి 1ని వ్యవకలనం చేయండి.
y=-2,x=4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.