x, yని పరిష్కరించండి
x=2
y=6
గ్రాఫ్
క్విజ్
Simultaneous Equation
\left. \begin{array} { l } { x + y = 8 } \\ { y = 3 x } \end{array} \right.
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
y-3x=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3xని వ్యవకలనం చేయండి.
x+y=8,-3x+y=0
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x+y=8
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=-y+8
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
-3\left(-y+8\right)+y=0
మరొక సమీకరణములో xను -y+8 స్థానంలో ప్రతిక్షేపించండి, -3x+y=0.
3y-24+y=0
-3 సార్లు -y+8ని గుణించండి.
4y-24=0
yకు 3yని కూడండి.
4y=24
సమీకరణం యొక్క రెండు వైపులా 24ని కూడండి.
y=6
రెండు వైపులా 4తో భాగించండి.
x=-6+8
x=-y+8లో yను 6 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=2
-6కు 8ని కూడండి.
x=2,y=6
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y-3x=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3xని వ్యవకలనం చేయండి.
x+y=8,-3x+y=0
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\0\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\0\end{matrix}\right)
\left(\begin{matrix}1&1\\-3&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\0\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}8\\0\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{1}{1-\left(-3\right)}\\-\frac{-3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}8\\0\end{matrix}\right)
2\times 2 మాత్రికకు సంబంధించి \left(\begin{matrix}a&b\\c&d\end{matrix}\right), విలోమ మాత్రిక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) అయితే, మాత్రిక సమీకరణాన్ని మాత్రిక గుణాకార సమస్య వలె తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}8\\0\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 8\\\frac{3}{4}\times 8\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\6\end{matrix}\right)
అంకగణితము చేయండి.
x=2,y=6
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
y-3x=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3xని వ్యవకలనం చేయండి.
x+y=8,-3x+y=0
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
x+3x+y-y=8
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -3x+y=0ని x+y=8 నుండి వ్యవకలనం చేయండి.
x+3x=8
-yకు yని కూడండి. y మరియు -y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
4x=8
3xకు xని కూడండి.
x=2
రెండు వైపులా 4తో భాగించండి.
-3\times 2+y=0
-3x+y=0లో xను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
-6+y=0
-3 సార్లు 2ని గుణించండి.
y=6
సమీకరణం యొక్క రెండు వైపులా 6ని కూడండి.
x=2,y=6
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}