x, yని పరిష్కరించండి
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
y = \frac{25}{3} = 8\frac{1}{3} \approx 8.333333333
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
x\times 5-y=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x+y=10,5x-y=0
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x+y=10
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=-y+10
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
5\left(-y+10\right)-y=0
మరొక సమీకరణములో xను -y+10 స్థానంలో ప్రతిక్షేపించండి, 5x-y=0.
-5y+50-y=0
5 సార్లు -y+10ని గుణించండి.
-6y+50=0
-yకు -5yని కూడండి.
-6y=-50
సమీకరణము యొక్క రెండు భాగాల నుండి 50ని వ్యవకలనం చేయండి.
y=\frac{25}{3}
రెండు వైపులా -6తో భాగించండి.
x=-\frac{25}{3}+10
x=-y+10లో yను \frac{25}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{5}{3}
-\frac{25}{3}కు 10ని కూడండి.
x=\frac{5}{3},y=\frac{25}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x\times 5-y=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x+y=10,5x-y=0
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\0\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&1\\5&-1\end{matrix}\right))\left(\begin{matrix}1&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&-1\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
\left(\begin{matrix}1&1\\5&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&-1\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&-1\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-5}&-\frac{1}{-1-5}\\-\frac{5}{-1-5}&\frac{1}{-1-5}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{5}{6}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 10\\\frac{5}{6}\times 10\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\\frac{25}{3}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{5}{3},y=\frac{25}{3}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x\times 5-y=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x+y=10,5x-y=0
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
5x+5y=5\times 10,5x-y=0
x మరియు 5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
5x+5y=50,5x-y=0
సరళీకృతం చేయండి.
5x-5x+5y+y=50
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 5x-y=0ని 5x+5y=50 నుండి వ్యవకలనం చేయండి.
5y+y=50
-5xకు 5xని కూడండి. 5x మరియు -5x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
6y=50
yకు 5yని కూడండి.
y=\frac{25}{3}
రెండు వైపులా 6తో భాగించండి.
5x-\frac{25}{3}=0
5x-y=0లో yను \frac{25}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
5x=\frac{25}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{25}{3}ని కూడండి.
x=\frac{5}{3}
రెండు వైపులా 5తో భాగించండి.
x=\frac{5}{3},y=\frac{25}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}