మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

y-3x=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3xని వ్యవకలనం చేయండి.
x+y=-6,-3x+y=-2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x+y=-6
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=-y-6
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
-3\left(-y-6\right)+y=-2
మరొక సమీకరణములో xను -y-6 స్థానంలో ప్రతిక్షేపించండి, -3x+y=-2.
3y+18+y=-2
-3 సార్లు -y-6ని గుణించండి.
4y+18=-2
yకు 3yని కూడండి.
4y=-20
సమీకరణము యొక్క రెండు భాగాల నుండి 18ని వ్యవకలనం చేయండి.
y=-5
రెండు వైపులా 4తో భాగించండి.
x=-\left(-5\right)-6
x=-y-6లో yను -5 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=5-6
-1 సార్లు -5ని గుణించండి.
x=-1
5కు -6ని కూడండి.
x=-1,y=-5
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y-3x=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3xని వ్యవకలనం చేయండి.
x+y=-6,-3x+y=-2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}-6\\-2\end{matrix}\right)
\left(\begin{matrix}1&1\\-3&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}-6\\-2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}-6\\-2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{1}{1-\left(-3\right)}\\-\frac{-3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-6\\-2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-6\right)-\frac{1}{4}\left(-2\right)\\\frac{3}{4}\left(-6\right)+\frac{1}{4}\left(-2\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-5\end{matrix}\right)
అంకగణితము చేయండి.
x=-1,y=-5
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
y-3x=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3xని వ్యవకలనం చేయండి.
x+y=-6,-3x+y=-2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
x+3x+y-y=-6+2
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -3x+y=-2ని x+y=-6 నుండి వ్యవకలనం చేయండి.
x+3x=-6+2
-yకు yని కూడండి. y మరియు -y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
4x=-6+2
3xకు xని కూడండి.
4x=-4
2కు -6ని కూడండి.
x=-1
రెండు వైపులా 4తో భాగించండి.
-3\left(-1\right)+y=-2
-3x+y=-2లో xను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
3+y=-2
-3 సార్లు -1ని గుణించండి.
y=-5
సమీకరణము యొక్క రెండు భాగాల నుండి 3ని వ్యవకలనం చేయండి.
x=-1,y=-5
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.