మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x+2y=3,5x-y=10
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x+2y=3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=-2y+3
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
5\left(-2y+3\right)-y=10
మరొక సమీకరణములో xను -2y+3 స్థానంలో ప్రతిక్షేపించండి, 5x-y=10.
-10y+15-y=10
5 సార్లు -2y+3ని గుణించండి.
-11y+15=10
-yకు -10yని కూడండి.
-11y=-5
సమీకరణము యొక్క రెండు భాగాల నుండి 15ని వ్యవకలనం చేయండి.
y=\frac{5}{11}
రెండు వైపులా -11తో భాగించండి.
x=-2\times \frac{5}{11}+3
x=-2y+3లో yను \frac{5}{11} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{10}{11}+3
-2 సార్లు \frac{5}{11}ని గుణించండి.
x=\frac{23}{11}
-\frac{10}{11}కు 3ని కూడండి.
x=\frac{23}{11},y=\frac{5}{11}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x+2y=3,5x-y=10
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&2\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\10\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&2\\5&-1\end{matrix}\right))\left(\begin{matrix}1&2\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\10\end{matrix}\right)
\left(\begin{matrix}1&2\\5&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\10\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\10\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\times 5}&-\frac{2}{-1-2\times 5}\\-\frac{5}{-1-2\times 5}&\frac{1}{-1-2\times 5}\end{matrix}\right)\left(\begin{matrix}3\\10\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{2}{11}\\\frac{5}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}3\\10\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 3+\frac{2}{11}\times 10\\\frac{5}{11}\times 3-\frac{1}{11}\times 10\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{23}{11}\\\frac{5}{11}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{23}{11},y=\frac{5}{11}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x+2y=3,5x-y=10
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
5x+5\times 2y=5\times 3,5x-y=10
x మరియు 5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
5x+10y=15,5x-y=10
సరళీకృతం చేయండి.
5x-5x+10y+y=15-10
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 5x-y=10ని 5x+10y=15 నుండి వ్యవకలనం చేయండి.
10y+y=15-10
-5xకు 5xని కూడండి. 5x మరియు -5x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
11y=15-10
yకు 10yని కూడండి.
11y=5
-10కు 15ని కూడండి.
y=\frac{5}{11}
రెండు వైపులా 11తో భాగించండి.
5x-\frac{5}{11}=10
5x-y=10లో yను \frac{5}{11} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
5x=\frac{115}{11}
సమీకరణం యొక్క రెండు వైపులా \frac{5}{11}ని కూడండి.
x=\frac{23}{11}
రెండు వైపులా 5తో భాగించండి.
x=\frac{23}{11},y=\frac{5}{11}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.