మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

9x-7y=-19,3x+y=7
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
9x-7y=-19
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
9x=7y-19
సమీకరణం యొక్క రెండు వైపులా 7yని కూడండి.
x=\frac{1}{9}\left(7y-19\right)
రెండు వైపులా 9తో భాగించండి.
x=\frac{7}{9}y-\frac{19}{9}
\frac{1}{9} సార్లు 7y-19ని గుణించండి.
3\left(\frac{7}{9}y-\frac{19}{9}\right)+y=7
మరొక సమీకరణములో xను \frac{7y-19}{9} స్థానంలో ప్రతిక్షేపించండి, 3x+y=7.
\frac{7}{3}y-\frac{19}{3}+y=7
3 సార్లు \frac{7y-19}{9}ని గుణించండి.
\frac{10}{3}y-\frac{19}{3}=7
yకు \frac{7y}{3}ని కూడండి.
\frac{10}{3}y=\frac{40}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{19}{3}ని కూడండి.
y=4
సమీకరణము యొక్క రెండు వైపులా \frac{10}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{7}{9}\times 4-\frac{19}{9}
x=\frac{7}{9}y-\frac{19}{9}లో yను 4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{28-19}{9}
\frac{7}{9} సార్లు 4ని గుణించండి.
x=1
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{28}{9}కు -\frac{19}{9}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=1,y=4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
9x-7y=-19,3x+y=7
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}9&-7\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-19\\7\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}9&-7\\3&1\end{matrix}\right))\left(\begin{matrix}9&-7\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-7\\3&1\end{matrix}\right))\left(\begin{matrix}-19\\7\end{matrix}\right)
\left(\begin{matrix}9&-7\\3&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-7\\3&1\end{matrix}\right))\left(\begin{matrix}-19\\7\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-7\\3&1\end{matrix}\right))\left(\begin{matrix}-19\\7\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9-\left(-7\times 3\right)}&-\frac{-7}{9-\left(-7\times 3\right)}\\-\frac{3}{9-\left(-7\times 3\right)}&\frac{9}{9-\left(-7\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-19\\7\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30}&\frac{7}{30}\\-\frac{1}{10}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}-19\\7\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{30}\left(-19\right)+\frac{7}{30}\times 7\\-\frac{1}{10}\left(-19\right)+\frac{3}{10}\times 7\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
అంకగణితము చేయండి.
x=1,y=4
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
9x-7y=-19,3x+y=7
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3\times 9x+3\left(-7\right)y=3\left(-19\right),9\times 3x+9y=9\times 7
9x మరియు 3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 9తో గుణించండి.
27x-21y=-57,27x+9y=63
సరళీకృతం చేయండి.
27x-27x-21y-9y=-57-63
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 27x+9y=63ని 27x-21y=-57 నుండి వ్యవకలనం చేయండి.
-21y-9y=-57-63
-27xకు 27xని కూడండి. 27x మరియు -27x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-30y=-57-63
-9yకు -21yని కూడండి.
-30y=-120
-63కు -57ని కూడండి.
y=4
రెండు వైపులా -30తో భాగించండి.
3x+4=7
3x+y=7లో yను 4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
3x=3
సమీకరణము యొక్క రెండు భాగాల నుండి 4ని వ్యవకలనం చేయండి.
x=1
రెండు వైపులా 3తో భాగించండి.
x=1,y=4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.